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Chapter 1

Introduction 1

This dissertation discusses sample size determination to obtain the
desired Bayes factor (Jeffreys, 1961; Kass & Raftery, 1995) if the re-
searchers use the Bayes factor to evaluate the null, unconstrained,
and informative hypotheses (Hoijtink, 2012). The informative hypoth-
esis can express the specific expectation of the researchers through
(in)equality constraints among parameters of interest in a statistical
model. The evidence in favor of one hypothesis compared to another
can be quantified by the Bayes factor. If the Bayes factor cannot reach
a convincing value in a sample of a particular size, the study would
produce an inconclusive result. Thus, Bayesian statisticians may be
interested in the determination of sample sizes to obtain the desired
Bayes factor.

The last decade has rendered many studies with respect to sam-
ple size determination/power analysis for null hypothesis significance
testing (NHST). This work was pioneered by Cohen (1988, 1992). Soft-
ware programs used for sample size calculation are G*Power (Faul,
Erdfelder, Buchner, & Lang, 2009; Faul, Erdfelder, Lang, & Buch-
ner, 2007; Mayr, Erdfelder, Buchner, & Faul, 2007), nQuery Advisor
(J. D. Elashoff, 2017), and PASS (NCSS, 2020). Nowadays, some re-
ports are available to calculate the sample size when the Bayes factor

1The author of this chapter is Qianrao Fu.
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1. Introduction

is used to evaluate the traditional hypothesis (null vs. alternative hy-
pothesis) (Schönbrodt & Wagenmakers, 2018; Stefan, Gronau, Schön-
brodt, & Wagenmakers, 2019). However, research on informative hy-
pothesis is still lacking. In this dissertation, the research and software
are available for the both the traditional and informative hypotheses to
plan the sample size using the Bayes factor.

This dissertation develops an R package SSDbain 2 to help applied
researchers to plan the sample size if they use the Bayes factor to eval-
uate hypotheses. This package can be used to calculate the sample
size for null, unconstrained, and informative hypotheses for a two-
sample t-test (Chapter 2), one-way ANOVA (Chapter 3), and multiple
linear regression (Chapter 4). The sample size is determined such that
the probability that the Bayes factor exceeds a pre-specified threshold
reaches a pre-specified value. With the tool provided, the researchers
can easily plan their sample size before data collection.

1.1 Informative Hypotheses

Almost all researchers in applied research have specific expectations
with respect to the statistical parameters of their models in mind.
Consider, for example, the following typical examples:

1. Two-sample t-test: It may be supposed that cognitive behavioral
therapy (CBT) in combination with medication is more effective
against depression than CBT only. In symbols, this hypothesis
can be expressed as H1: µcombination > µCBT, where µ reflects the
mean score for each group.

2. One-way ANOVA: It may be anticipated that physical therapy
in combination with behavioral therapy can lead to a more effec-
tive reduction in the aggression levels than only physical therapy
or behavioral therapy, which in turn are better than no training
(Hoijtink, 2012). In symbols, the hypothesis can be expressed as

2https://github.com/Qianrao-Fu/SSDbain
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1.2. Bayes Factor

H1: µcombination > µphysical = µbehavioral > µno, where µ denotes the
mean aggression level for each group.

3. Multiple linear regression: A researcher may want to know how
social skills, interest in artistic activities, and the use of com-
plicated language patterns affect the target variable intelligence
quotient (IQ). It may be expected that all three predictor vari-
ables have positive effects on the dependent variable IQ. In sym-
bols, this expectation can be represented as H1: βsocial > 0, βartistic >
0, βlanguage > 0, where β is the regression coefficient.

These hypotheses are called informative hypotheses because these
hypotheses paint a more realistic picture of what researchers expect in
a population than the traditional null and unconstrained hypotheses.

1.2 Bayes Factor

The Bayes factor (Jeffreys, 1961) expresses the relative support in the
data between two competing hypotheses in the form of an odds ratio.
It is defined as the ratio of the marginal likelihoods for two hypotheses
(Kass & Raftery, 1995). In Bayesian evaluation for informative hypoth-
esis, the Bayes factor for an informative hypothesis H1 versus an un-
constrained hypothesis Hu can be expressed as the ratio of the relative
fit (f1) and complexity (c1) of the informative hypothesis (Klugkist,
Laudy, & Hoijtink, 2005; Hoijtink, 2012, p. 59).

The formula can be expressed as BF1u = f1/c1. The Bayes fac-
tor for two informative hypotheses (e.g., H1 vs. H2) can be repre-
sented as the ratio of the relative fit and complexity of hypothesis
H1 and the relative fit and complexity of hypothesis H2. In symbols,
BF12=BF1u

BF2u
= f1

c1
/ f2
c2

. The interpretation of the Bayes factor is straightfor-
ward. For example, if the Bayes factor BF01 = 10, it means the data are
ten times more likely to have occurred under H0 than H1. Similarly, if
the Bayes factor BF01 = 0.1, it means the data are ten times more likely
to have occurred under H1 than H0 because of BF10 = 1/BF01=10.

11



1. Introduction

In the Bayesian framework, we do not use the cut-off values as pro-
vided by Jeffreys (1961); Kass and Raftery (1995) while interpreting
the results. According to the rule introduced by Kass and Raftery
(1995), the degree of support for H1 versus H2 is divided into four cat-
egories: unconvincing (1 ≤ BF12 ≤ 3), positive (3 ≤ BF12 ≤ 20), strong
(20 ≤ BF12 ≤ 150), and very strong (BF12 ≥ 150). As was paraphrased
by Van de Schoot, Winter, Ryan, Zondervan-Zwijnenburg, and De-
paoli (2017), "God would love a Bayes factor of 3.01 nearly as much
as a Bayes factor of 2.99". This means that we cannot say that a Bayes
factor of 3.01 is positive evidence, but a Bayes factor of 2.99 is uncon-
vincing evidence based on the rule. We do not use these cut-off values
to interpret the Bayes factor obtained from the analysis of real data,
thereby avoiding problems such as BF-hacking (Simonsohn, 2014),
publication bias (Ioannidis, 2005; Simmons, Nelson, & Simonsohn,
2011; Van Assen, Van Aert, Nuijten, & Wicherts, 2014), and question-
able research practices (Fanelli, 2009; Masicampo & Lalande, 2012;
Wicherts et al., 2016).

Several tools and software can be used to compute the Bayes fac-
tor. The most popular R packages to evaluate the Bayes factor are
BayesFactor (Morey, Rouder, Jamil, & Urbanek, 2018), bain (Gu, Mul-
der, & Hoijtink, 2018), and BFpack (Mulder et al., 2019). Parts of
BayesFactor and bain have been implemented in JASP. In this dis-
sertation, the bain package is employed to calculate the Bayes factor.
It is a versatile R package, which can be used to evaluate of kinds of
the statistical models for null, unconstrained, complement, and infor-
mative hypotheses. Besides, it is developed by the author’s research
group and this dissertation is a further extension of the group’s re-
search work.

12
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Determination

1.3 Sequential Testing with Bayes Factor or
Sample Size Determination

In a sequential test (Wald, 1945), the basic idea is to collect an initial
batch of data, compute the p-value to evaluate H0, if necessary, collect
more data, and recompute the p-value, and to repeat the process until
the p-value is below the significance level α or the resources run out.
Based on Wald’s work, sequential testing with the Bayes factor instead
of the p-value was proposed in (Rouder, 2014; Schönbrodt, Wagen-
makers, Zehetleitner, & Perugini, 2017). This procedure was called
Bayesian updating. The Bayes factor is computed as the data are being
collected until it reaches the desired threshold (stopping for success).
However, an unconvincing Bayes factor may be obtained for support-
ing the true hypothesis even with all available resources (stopping for
futility).

The Bayesian updating procedure is flexible concerning the sam-
pling plan; the Bayes factor can be monitored continuously as data
accumulate, and does not require an a priori guess of the true effect
size (Rouder, 2014; Wagenmakers, 2007). However, Bayesian updat-
ing is not always available for the situation when it is difficult to col-
lect data or the time cost is high, for example, when the target group is
very small (e.g., rare disease, cognitive disorder) or the survey period
is several decades or longer. Furthermore, it is important to have an a
priori sample size for these situations so that researchers have a clear
mind on whether or not to carry out the experiment (if the sample size
is much larger than the resources available, the experiment should be
cancelled) and how many samples need to be collected. In addition,
when the researchers plan a study and the educational institution has
to submit the research proposal to the ethical committee, knowledge
of the required sample size is extremely useful.
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1. Introduction

1.4 Outline of the Dissertation

Over the past two decades, Bayes factors for informative hypothesis
testing have gained popularity among scientists in the social and be-
havioral sciences (Mulder & Wagenmakers, 2016; Van de Schoot et al.,
2017). Unfortunately, tools for sample size calculation in the Bayesian
framework are still scarce. This dissertation proposes a criterion for
sample size determination using the Bayes factor. The sample size is
determined such that the Bayes factor exceeds a user-specified thresh-
old with a specific probability. To help the applied researchers plan
the sample size requirement, an R package called SSDbain has been
developed, which can be installed from CRAN. This package uses
the R function bain from the R package bain (Gu et al., 2018). The
code has been tested by the test-that package, and the help files are
included in the SSDbain package. This package can deal with null,
unconstrained, and informative hypotheses under the two-sample t-
test, one-way ANOVA, and multiple linear regression models. It may
help applied researchers to optimally design their empirical research.
It is also of interest to funding agencies that almost always request a
thorough motivation of sample size in project proposals. This disser-
tation consists of three main chapters. These chapters are summarized
as follows.

Chapter 2 develops a function called "SSDttest", which can be used
to determine the sample size for the Bayesian t-test and Bayesian Welch’s
test. Sample sizes for different values of the commonly used Cohen’s
effect size d, equal and unequal variances for two-groups, and two-
sided/one-sided hypotheses have been presented in tables in this chap-
ter. The R function can be easily used to calculate sample sizes for sce-
narios not covered by the tables. Detailed instructions on how to use
SSDttest are provided. The functionality of SSDttest was showcased
through some practical examples.

Chapter 3 develops two functions, called "SSDANOVA" and
"SSDANOVA_robust" and describes how to calculate the sample size
using the Bayes factor for ANOVA. The former function can be used
for ANOVA if K groups share an equal variance and Welch’s ANOVA

14



1.4. Outline of the Dissertation

if not all groups have an equal variance; the latter function is used
for robust ANOVA if some distributions of K groups are skewed or
heavy-tailed, and/or the data contain outliers, which are common in
practice. Two options are available to set the effect size: the first is that
the effect size is specified directly, which is an easy way to evaluate the
Bayes factor. But the effect size is not always available. In this case, we
can input the mean and variance for each group instead, and then the
effect size is determined indirectly. The null, order, unconstrained,
and complement hypotheses are studied. Step-by-step instructions
and several examples are provided to show researchers how to use
these two functions.

Chapter 4 introduces a function called "SSDRegression" that al-
lows an applied researcher to determine the sample size for hypoth-
esis testing using the Bayes factor under the multiple linear regres-
sion models. This function is intended for multiple linear regression
with correlated or uncorrelated independent variables. To compute
the sample size, an effect size has to be specified for the non-null hy-
pothesis. Instead of Cohen’s effect size f 2, in this chapter, the coef-
ficient of determination R2 and the ratio among the regression coef-
ficients are specified. It is versatile for null, unconstrained, signed,
complement, and order hypotheses (with standardized regression co-
efficients). It can help psychologists plan the sample size for multiple
linear regression analysis even if they do not have any programming
background.

Chapter 5 concludes this dissertation with a discussion of the work
so far and a look at the future of sample size determination for the
Bayesian informative hypothesis. An a priori sample size calculation
for Bayesian (informative) hypothesis evaluation testing is important
in empirical research; therefore, this dissertation and the software de-
veloped herein are urgently needed.

15





Chapter 2

Sample-Size Determination for
the Bayesian T Test and Welch’s
Test Using the Approximate
Adjusted Fractional Bayes
Factor 1

When two independent means µ1 and µ2 are compared, H0 : µ1 = µ2,
H1 : µ1 , µ2, and H2 : µ1 > µ2 are the hypotheses of interest. This
chapter introduces the R package SSDbain 2, which can be used to
determine the sample size needed to evaluate these hypotheses us-
ing the Approximate Adjusted Fractional Bayes Factor (AAFBF) im-

1This chapter has been published as Fu, Q., Hoijtink, H., & Moerbeek, M. (2021).
Sample-Size Determination for the Bayesian T Test and Welch’s Test Using the Ap-
proximate Adjusted Fractional Bayes Factor. Behavior Research Methods, 53(1), 139-
152.
Author contributions: QF, MM, and HH designed the research. QF developed the
software package, and wrote the paper. MM and HH gave feedback on software
development, constructing and writing the paper. All analyses presented in the
chapter can be reproduced using the research archive that can be found on github
at https://github.com/Qianrao-Fu/research-archive.

2https://github.com/Qianrao-Fu/SSDbain
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2. Sample-Size Determination for the Bayesian T Test and Welch’s

Test Using the Aproximate Adjusted Fractional Bayes Factor

plemented in the R package bain. Both the Bayesian t-test and the
Bayesian Welch’s test are available in this R package. The sample size
required will be calculated such that the probability that the Bayes
factor is larger than a threshold value is at least η if either the null or
alternative hypothesis is true. Using the R package SSDbain and/or
the tables provided in this chapter, psychological researchers can eas-
ily determine the required sample size for their experiments.

2.1 Introduction

In the Neyman-Pearson approach to hypothesis testing (Gigerenzer,
2004) a null and an alternative hypothesis are compared. Suppose
the population means of males and females are denoted by µ1 and µ2.
Three hypotheses are relevant: the null hypothesis H0: µ1 = µ2, the
two-sided alternative hypothesis H1: µ1 , µ2, and the one-sided alter-
native hypothesis H2: µ1 > µ2. The null hypothesis H0 is rejected if
the observed absolute t-statistic falls inside the critical region, where
the critical region is a set of values that are equal to or greater than
the critical value t1−α/2,v , where α is the Type I error rate, and v is the
degree of freedom for a two-sided alternative hypothesis. The null hy-
pothesis H0 is rejected if the observed t-statistic falls inside the critical
region, where the critical region is a set of values that are equal to or
greater than the critical value t1−α,v for a one-sided alternative hypoth-
esis (Gigerenzer, 1993, 2004). Statistical power is the probability of
finding an effect when it exists in the population, that is, the probabil-
ity of rejecting the null hypothesis when the alternative is true. Power
analysis for Neyman-Pearson hypothesis testing has been studied for
more than 50 years. Cohen (1988, 1992) played a pioneering role in
the development of effect sizes and power analysis, and he provided
mathematical equations for the relation between effect size, sample
size, Type I error rate and power. For example, if one aims for a power
of 80%, the minimum sample size per group should be 394, 64 and 26
for small (d = 0.2), medium (d = 0.5) and large (d = 0.8) effect sizes, re-
spectively for an independent samples two-sided t-test at Type I error

18



2.1. Introduction

rate α = .05, where Cohen’s d is the standardized difference between
two means. To perform statistical power analyses for various tests,
the G*Power program was developed by Erdfelder, Faul, and Buchner
(1996), Faul et al. (2007) and Mayr et al. (2007). Despite the avail-
ability of G*Power there is still a lot of underpowered research in the
behavioral and social sciences, even though criticism with respect to
insufficient power is steadily increasing (Maxwell, 2004; Button et al.,
2013; Simonsohn, Nelson, & Simmons, 2014).

Numerous articles have criticized the Neyman-Pearson approach
to hypothesis testing in the classical framework (e.g., Cohen, 1994;
Nickerson, 2000; Sellke, Bayarri, & Berger, 2001; Wagenmakers, 2007;
Hubbard & Lindsay, 2008). As an alternative, Jeffreys (1961) and Kass
and Raftery (1995) introduced the Bayes factor (BF). BF quantifies the
relative support in the data for one hypothesis against another, and
in addition to that, cannot only provide evidence in favor of the al-
ternative hypothesis, but also provides evidence in favor of the null
hypothesis. This approach for Bayesian hypothesis evaluation is in-
creasingly receiving attention from psychological researchers, see for
example Van de Schoot et al. (2017); Vandekerckhove, Rouder, and
Kruschke (2018); Wagenmakers, Morey, and Lee (2016). Nevertheless,
researchers, especially psychologists, find it difficult to calculate BF
and several software packages for Bayesian hypothesis evaluation have
been developed. The most important are the R package BayesFactor
(Rouder, Speckman, Sun, Morey, & Iverson, 2009), that can be found at
http://bayesfactorpcl.r-forge.r-project.org/ and the R pack-
age bain (Gu et al., 2018) that can be found at https://informative
-hypotheses.sites.uu.nl/software/bain/. The latter is the suc-
cessor of the stand-alone software BIEMS (Mulder, Hoijtink, de Leeuw,
et al., 2012) that can be found at https://informative-hypotheses
.sites.uu.nl/software/biems/. Both BayesFactor and bain are im-
plemented in JASP (https://jasp-stats.org/). The main difference
between Approximate Adjusted Fractional Bayes Factor (AAFBF) im-
plemented in bain and the Jeffreys-Zellner-Siow Bayes factor imple-
mented in BayesFactor is the choice of the prior distribution. We focus
on the AAFBF (to be elaborated in the next section) in this manuscript
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2. Sample-Size Determination for the Bayesian T Test and Welch’s

Test Using the Aproximate Adjusted Fractional Bayes Factor

because it is available for both the t-test and the Welch’s test.
When two independent group means are compared, there exist

two specific cases in which variances are either equal or unequal for
the two groups, which correspond to t-test or Welch’s test. The t-test
is well-known, while Welch’s test is often extremely important and
useful as demonstrated by Ruscio and Roche (2012); Rosopa, Schaf-
fer, and Schroeder (2013); Delacre, Lakens, and Leys (2017). In the
Neyman-Pearson approach to hypothesis testing, the formulae for cal-
culating the sample size are given by an a priori power analysis for t-
test and Welch’s test (Cohen, 1992; Faul et al., 2007). There is not yet a
solid body of literature regarding sample size determination (SSD) for
Bayesian hypothesis evaluation, but Weiss (1997) and De Santis (2004,
2007) give different sample size determination approaches for testing
one mean of the normal distribution with known variance. Kruschke
(2013); Kruschke and Liddell (2018) discuss parameter estimation and
use the posterior distribution as a measure of evidence strength, and
Schönbrodt and Wagenmakers (2018) and Stefan et al. (2019) intro-
duce Bayes factor design analysis applied to fixed-N and sequential
designs. This chapter will elaborate on these approaches in the fol-
lowing manners. 1) in addition to the Bayesian t-test the Bayesian
Welch’s test also will be considered. In practice, Welch’s test is more
widely used, which is a necessary improvement in this manuscript; 2)
both two-sided and one-sided alternative hypotheses are considered.
One-sided alternative hypothesis can effectively reduce the required
sample size and it is recommended to be used. This manuscript will
provide a comprehensive analysis for both two-sided and one-sided
alternative hypotheses; 3) the sample size will be calculated such that
the probability that the Bayes factor is larger than a user specified
threshold is at least η if either the null hypothesis or the alternative
hypothesis is true; 4) we use the dichotomy method to compute the
sample size very fast. In the previous publication, the sample size
is computed through progressively increase the sample size with one
until the threshold value is reached. This method is simple and easily
used but with high computation effort, especially for the case when
the required sample size is large, e.g., the sample size of 500 will

20



2.2. Bayes Factor

cause several hundreds of iterations, while only 12 iterations are re-
quired with our method; 5) the sensitivity of SSD with respect to the
specification of the prior will be highlighted. This is very important
when Bayes factor is used for the hypothesis testing evaluation, be-
cause there exists some uncertainty for the required sample size for
different prior distributions.

The outline of this chapter is as follows. First, we give a brief in-
troduction of the AAFBF, show how it can be computed, discuss the
specification of the prior distribution and sensitivity analyses. Sub-
sequently, sample size determination is introduced. Thereafter, we
will discuss the role of sample size determination in Bayesian infer-
ence. The chapter continues with an introduction of the ingredients
required for sample size determination. Then, the algorithm used to
determine the sample size will be elaborated. Next, features of SSD
are described. Thereafter, three examples are presented that will help
psychological researchers to use the R package SSDbain if they plan to
compare two independent means using the t-test or the Welch’s test.
The chapter ends with a short conclusion.

2.2 Bayes Factor

In this chapter, the means of two groups, µ1 and µ2, are compared for
both Model 1: the within-group variances for Group 1 and 2 are equal,

yp = µ1D1p +µ2D2p + ϵp with ϵp ∼N (0,σ2), (2.1)

and Model 2: the within-group variances for Group 1 and 2 are not
equal,

yp = µ1D1p +µ2D2p + ϵp with ϵp ∼N (0,D1pσ
2
1 +D2pσ

2
2 ), (2.2)

where D1p = 1 for person p = 1, · · · ,N and 0 otherwise, D2p = 1 for per-
son p = N + 1, · · · ,2N and 0 otherwise, N denotes the common sample
size for Group 1 and 2, ϵp denotes the error in prediction, σ2 denotes
the common within-group variance for Group 1 and 2, and σ2

1 and σ2
2
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denote the different within-group variances for Group 1 and 2, respec-
tively.

In this chapter, the AAFBF (Gu et al., 2018; Hoijtink, Gu, & Mul-
der, 2019) is used to test hypotheses: H0 : µ1 = µ2 against H1: µ1 , µ2
3 or against H2 : µ1 > µ2. The Bayes factor (BF) quantifies the relative
support in the data for a pair of competing hypotheses. Specifically, if
BF01 = 5, the support in the data is five times stronger for H0 than for
H1; if BF01 = 0.2, the support in the data is five times stronger for H1
than for H0. As was shown in Klugkist et al. (2005) the BF in terms of
comparing the constrained hypothesis Hi (i = 0,2) with the hypothesis
H1 can be expressed in a simple form:

BFi1 =
fi
ci
, (2.3)

where ci denotes the complexity of the hypothesis Hi , and fi denotes
the fit of the hypothesis Hi . The complexity ci (a hypothesis with
smaller complexity provides more precise predictions) of Hi describes
how specific Hi is, and the corresponding fit fi (the higher the fit the
more a hypothesis is supported by the data) describes how well the
data support Hi . The formulae of the fit and complexity are:

fi =
∫
µ∈Hi

g1(µ | y,D1,D2)dµ, (2.4)

ci =
∫
µ∈Hi

h1(µ | y,D1,D2)dµ, (2.5)

where g1 (µ | y,D1,D2) denotes the posterior distribution, and h1 (µ |
y,D1,D2) the prior distribution of µ under H1. In case of H2, f2 and c2
are the proportions of the posterior distribution g1(·) and prior distri-
bution h1(·) in agreement with H2, respectively; in case of H1 Equation

3Note that, H1 is equivalent to the unconstrained hypothesis Hu : µ1, µ2, in the
sense that the Bayes factor for a constrained hypothesis versus H1 is the same as
versus Hu
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3.6 reduces to the Savage-Dickey density ratio (Dickey, 1971; Wetzels,
Grasman, & Wagenmakers, 2010). The BF for H0 against H2 is:

BF02 =
BF01

BF21
=

f0
/
c0

f2
/
c2

. (2.6)

Actually, g1(·) is a normal approximation of the posterior distribution
of µ1 and µ2:

g1(µ | y,D1,D2) = N

([
µ̂1
µ̂2

]
,

[
σ̂2/N 0

0 σ̂2/N

])
, (2.7)

when Model 1 is considered; and

g1(µ | y,D1,D2) = N

([
µ̂1
µ̂2

]
,

[
σ̂2

1 /N 0
0 σ̂2

2 /N

])
, (2.8)

when Model 2 is considered, where µ̂1 and µ̂2 denote the maximum
likelihood estimates of the means of Group 1 and Group 2, respec-
tively, and σ̂2, σ̂2

1 and σ̂2
2 denote unbiased estimates of the within-

group variances. Due to the normal approximation, the general form
of the AAFBF can be used to evaluate hypothesis evaluation in a wide
range of statistical models such as Structural Equation Modeling, lo-
gistic regression, multivariate regression, AN(C)OVA, etc. Therefore,
it is currently the most versatile method for Bayesian hypotheses eval-
uation.

The prior distribution is based on the fractional Bayes factor ap-
proach (O’Hagan, 1995; Mulder, 2014). It is constructed using a frac-
tion of information in the data. As elaborated in Gu et al. (2018) and
Hoijtink, Gu, and Mulder (2019) the prior distribution is given by:

h1(µ | y,D1,D2) = N

[ 0
0

]
,

 1
b
σ̂2

N 0
0 1

b
σ̂2

N

 , (2.9)

where b is the fraction of information in the data used to specify the
prior distribution, when Model 1 is considered, and
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h1(µ | y,D1,D2) = N

[ 0
0

]
,

 1
b
σ̂2

1
N 0

0 1
b
σ̂2

2
N


 , (2.10)

when Model 2 is considered.
The prior distribution is NOT used to represent the prior knowl-

edge about the effect size under H1 or H2. The prior distribution is
chosen such that a default Bayesian hypothesis evaluation of H0 vs Hi
is obtained, that is, subjective input from the researcher is not needed.
This is an advantage of default Bayesian hypothesis evaluation because
the vast majority of researchers want to evaluate H0 vs H1 or H0 vs
H2 and do not want to evaluate the corresponding prior distributions.
The default value of b used for the Bayesian t-test and Welch’s test
equals 1

2N . This choice is inspired by the minimal training sample
idea (Berger & Pericchi, 1996, 2004), that is, turn a noninformative
prior into a proper prior using a small proportion of the information
in the data. For our situation this is equivalent to using one half obser-
vation from Group 1 and one half observation from Group 2 is used,
which is in total one observation. This makes sense because the focus
is on one contrast, that is, µ1 − µ2, which means that one parameter
needs to be estimated. This choice is too some extend arbitrary, for
example, we could also use 2b (one person is needed to estimate each
mean) or 3b (one person for each mean and the half for the residual
variance), which still maintains the spirit of the minimal training sam-
ple approach. In summary, the goal is to compare H0 with Hi (i = 1,2)
by means of Bayes factor, but not comparing the prior distribution of
H0 with Hi (i = 1,2) through the Bayes factor. To achieve this, the
prior distributions are calibrated such that H0 and Hi can be evalu-
ated without requiring user input. However there is some uncertainty
in the calibrating, hence the AAFBF can be computed using the frac-
tions b, 2b, and 3b, and the required sample sizes can be computed
accordingly.

As an illustration, Table 2.1 and Table 2.2 list the BF for the com-
parison of H0 with the two-sided alternative H1 and the one-sided
alternative H2, respectively, when equal within-groups variances are
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considered (Model 1). From Table 2.1, we can see that when H0 is true
(e.g., the entry with b), the support in the observed data is 13 times
larger for H0 than for H1; when H1 is true, the support in the observed
data is 22 (1/0.045) times larger for H1 than for H0. Table 2.2 shows
that the data were nearly 18 times more likely to support H0 when H0
is true; the support in the data is more than 45 (1/0.022) times more
likely to support H2 when H2 is true. Therefore, for the same sample
size per group, it is much easier to get strong evidence for the one-
sided than for the two-sided hypothesis (e.g., compare the correspond-
ing shaded areas of the columns BF01 in Table 2.1 and BF02 in Table
2.2, BF20=1/BF02 is larger than BF10=1/BF01). The fit is higher for the
true hypothesis (e.g., see column f0 in Table 2.1, f0 = 2.816 when H0
is true is larger than f0 = 0.009 when H1 is true). As can be seen in
Tables 2.1 and 2.2 (bottom two panels) the BF is sensitive to the choice
of the fraction. The complexity c0 becomes larger for H0 if the fraction
increases (from 0.209 to 0.295, then to 0.362), while the complexity
c2 is not affected by the fraction for H2 (0.5 for any value of fraction).
This is because the complexity of a hypothesis specified using only in-
equality constraints is independent of the fraction, see Mulder (2014)
for a proof. The corresponding BF for H0 becomes smaller (e.g., in the
column BF01, BF decreases from 13.49 to 9.54, then to 7.79), and the
BF for H2 does not change.

2.3 Criteria for Sample Size Determination

For the Neyman-Pearson approach to hypothesis testing power analy-
sis renders an indication of the sample sizes needed to reject the null-
hypothesis with a pre-specified probability if it is not true. If the sam-
ple sizes are sufficiently large, under-powered studies can be avoided
(Maxwell, 2004). A power analysis is conducted prior to a research
study, and can be executed if three ingredients, Type I error rate, Type
II error rate, and effect size are given. The main difficulty is getting an
a priori educated guess of the true effect size. In practice often one of
two approaches to choose the effect size is used: use an estimate of the
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effect size based on similar studies in the literature, experts’ opinion
or a pilot study (Sakaluk, 2016; Anderson, Kelley, & Maxwell, 2017);
or, use the smallest effect size that is considered to be relevantly differ-
ent from zero for the study at hand (Perugini, Gallucci, & Costantini,
2014). If the chosen effect size is smaller than the unknown true effect
size, the sample sizes will be larger than necessary, which can be costly
or unethical, and if the chosen effect size is larger than the unknown
true effect size, the sample sizes will be too small and the resulting
study will be underpowered.

When the Bayes factor is used for hypothesis testing, sample size
determination instead of power analysis is used although the goals are
similar. The main ingredients for SSD in a Bayesian framework are
explained in Figure 2.1. Panel (a) on the left: t-test, sample size N =
26 per group, distribution of BF01 when data are repeatedly sampled
from a population in which H0 : µ1 = µ2 is true. Panel (b) on the right:
t-test, sample size N = 104 per group, distribution of BF10 when data
are repeatedly sampled from a population in which µ1 , µ2, but with
the addition that the effect size has to be chosen (here we use effect
size d = 0.5 to simulate data). We face the same problem as for power
analysis, namely an unknown true effect size, but as will be elaborated
in the next section, the combination of SSD and Bayesian updating can
be used to address this problem.

Sample size will be determined such that P (BF01 > BFthresh|H0) ≥
η and P (BF10 > BFthresh|H1) ≥ η, that is, the probability that BF01 is
larger than a user specified threshold value if H0 is true should be
at least η, and the probability that BF10 is larger than the threshold
value if H1 is true should be at least η. This is in line with power
analysis in Neyman-Pearson approach to hypothesis testing in which
the Type I error rate α and Type II error rate β are given beforehand. In
the Bayesian framework, instead of Type I error rate and Type II error
rates, we use the probability that the Bayes factor is larger than BFthresh
under the null hypothesis and under the alternative hypothesis. With
respect to the choice of BFthresh, two situations can be distinguished.
Situation 1: if one wants to explore which hypothesis is more likely
to be supported, one can set BFthresh=1. Situation 2: if one wants to
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find compelling evidence to support the true hypothesis, one can set
BFthresh equal to 3, 5 or 10, depending on the strength of the evidence
that is required. With respect to the choice of η it should be noted
that 1 − η are, for the null and alternative hypotheses, the Bayesian
counterparts of the Type I and the Type II error rates. In high-stakes
research, the probability of an erroneous decision should be small,
therefore a larger value of η such as 0.90 should be used. In low-
stakes or more exploratory research erroneous decisions may be less
costly and smaller values like η = 0.80 could be used.

2.4 The Role of Sample Size Determination
in Bayesian Inference

In the Bayesian framework, updating (Rouder, 2014; Schönbrodt et
al., 2017; Schönbrodt & Wagenmakers, 2018) can be seen as an al-
ternative for sample size determination that does not require speci-
fication of the effect size under the alternative hypothesis. Bayesian
updating proceeds along the following steps: i) specify an initial sam-
ple size per group and the required support in terms of BF; ii) collect
data with the initial sample size; iii) compute the BF; iv) if the support
in favor of either H0 or H1 is large enough the study is finished; if the
support is not large enough, increase the sample size and return to iii).
Because in the Bayesian framework the goal is not to control the Type
I and Type II error rates (the goal is to quantify the support in the data
for the hypotheses under consideration) this is a valid procedure.

With the availability of Bayesian updating and sample size deter-
mination, two strategies can be used to obtain sufficient support for
the hypotheses under consideration, which will be described in the
next two sub-sections: i) sample size determination as a pre-experimen-
tal phase in case updating is not an option; and, ii) sample size deter-
mination followed by updating.
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2.4.1 Sample Size Determination as a
Pre-experimental Phase

If updating can be used, it is an approach that avoids pre-specification
of the effect size under the alternative hypothesis and is a worthwhile
option to pursue. However, updating can not always be used or sam-
ple size determination is a required step before updating can be exe-
cuted. Consider the following situations. Situation 1. The population
of interest is small, for instance, persons with a rare disease or cogni-
tive disorder. The control and treatment groups will very likely not
be large. Updating is in this situation not an option. However, if, for
example, a researcher is interested to detect an effect size of Cohen’s
d (for the t-test) equal to .8 with a probability η = 0.80 that the Bayes
factor is at least 5, the sample size required is 67 per group (see Table
2.5, which will be discussed after the next two sections). Since such a
large sample size can not be obtained, it is decided not to execute the
experiment in this form. Situation 2. Next month a survey will start
in which 150, currently single, men and women will be tracked for 21
years. Updating is not an option in such a longitudinal cohort study,
but Table 2.4 shows that 104 persons per group are needed to have a
probability of at least η = 0.80 to obtain a Bayes factor larger than 3
if the effect size is Cohen’s d = .5. Since the effect size is expected to
be 0.5, the study can be actually conducted because the sample size is
150 persons per group. Situation 3. The researchers have to submit the
research plans to the (medical) ethical committee. They want to use
updating, but both the researchers and the committee’s members may
want an indication of the sample size needed to obtain sufficient sup-
port for different effect sizes under the alternative hypothesis. Only
with these numbers they can argue that they have sufficient funding
and research time to execute the research plan. Sample size determi-
nation can be used to obtain an indication of the sample sizes needed
to obtain sufficient support for different effect sizes. These numbers
can be included in the researcher’s research proposal for the (medical)
ethical committee.
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2.4.2 Sample Size Determination Followed by
Updating

When sample size determination is used, however, as will be high-
lighted using Situations 4 and 5, having to specify the effect size under
the alternative hypothesis may have two undesirable consequences.
Consider the following situations. Situation 4. If the alternative hy-
pothesis is true, the researchers expect an effect size Cohen’s d = .5.
They determine the sample sizes such that an effect size of Cohen’s d
(for the t-test) equal to .5 with η = 0.80 that the Bayes factor is at least
3 is detected, that is, 104 persons per group. After collecting data
they obtain BF01 = 2.5. This is an undesirable result because they did
not achieve the desired support. They can remedy this by updating,
that is, increasing the sample size until the Bayes factor is at least 3.
The latter is only possible if updating is an option. Situations 1 and 2
are examples of cases where this is not an option. Situation 5. Anal-
ogous to Situation 4, but now the researchers find BF01 = 8.3. This is
a problem in the sense that they spent more funds and research time
than would have been necessary. The researchers plan and are able
to collect the data from 104 persons per group. If the research design
permits this they can update until they reach the required support
(which may be achieved at a sample size smaller than 104 per group),
which will save funds and research time. The combination of sam-
ple size determination and updating is the most powerful approach,
whenever it is applicable.

2.5 Ingredients for Sample Size
Determination

Sample size determination for the Bayesian t-test and the Bayesian
Welch’s test is implemented in the function SSDttest of the R package
SSDbain available at https://github.com/Qianrao-Fu/SSDbain. In
this section we introduce and discuss the necessary input for sample
size determination with the SSDttest function. In the sections that
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follow we will provide the algorithms used for Bayesian SSD, and a
discussion of SSD properties using three tables for Cohen’s d equal to
.2, .5, and .8, respectively. Furthermore, three examples of the appli-
cation of SSDttest are presented.

After loading the SSDbain library, the following call is used to de-
termine the sample size per group:

library(SSDbain)

SSDttest(type=’equal’,Population_mean=c(0.5,0),var=NULL,BFthresh=3,

eta=0.80,Hypothesis=’two-sided’,T=10000)

The following ingredients are used:

1. type, a string that specifies the type of the test. If type=’equal’,
the t-test is used; if type=’unequal’, the Welch’s test is used. The
default setting is type=’equal’. If one expects (based on prior
knowledge or prior evidence) that the two within-group vari-
ances are equal, choose the Bayesian t-test, otherwise, choose
the Bayesian Welch’s test (Ruxton, 2006; Ruscio & Roche, 2012;
Delacre et al., 2017).

2. Population_mean, vector of length 2 specifying the population
means of the two groups under H1 or H2. The default setting is
Population_mean=c(0.5,0) when the effect size is d = 0.5. Note
that, if var=NULL and the population mean in Group 2 equals 0,
the population mean in Group 1 is identical to Cohen’s d.

3. var, vector of length 2 giving the two within-group variances.
If type=’equal’, the default is var=c(1,1); if type=’unequal’, the
default is var=c(4/3,2/3). Of course, any values of the variances
can be used as input for the argument var.

4. BFthresh, a numeric value that specifies the magnitude of Bayes
factor, e.g., 1, 3, 5, 10. The default setting is BFthresh=3. If one
chooses 5, one requires that BF01 is at least 5 if the data comes
from a population in which H0 is true, and the BF10 is at least 5 if
the data comes from a population in which H1 or H2 is true. The

30



2.5. Ingredients for Sample Size Determination

choice for the BFthresh value is subjective meaning that different
values may be chosen by different researchers, for different stud-
ies and in different fields of science. A large BFthresh value may
be chosen in high-stakes research were the degree of support of
a hypothesis against another needs to be large. In pharmaceu-
tical research for instance, the chances to have a new drug for
cancer to be approved may be larger if there is high support for
it increasing life expectancy as compared to an existing drug, es-
pecially so when the new drug may have side-effects. A lower
BFthresh value may be chosen in low-stakes research. An ex-
ample also comes from pharmaceutical research, where a new
headache relief drug and an existing competitor are compared
on their onset of action, and side effects are not likely to occur.

5. eta, a numeric value that specifies the probability that the Bayes
factor is larger than the BFthresh if either the null hypothesis or
the alternative hypothesis is true, e.g., 0.80, 0.90. The default
setting is eta=0.80.

6. Hypothesis, a string that specifies the hypothesis. Hypothesis=
’two-sided’ when the competing hypotheses are H0 : µ1 = µ2, H1 :
µ1 , µ2; Hypothesis=’one-sided’ when the competing hypotheses
are H0 : µ1 = µ2, H2 : µ1 > µ2. The default setting is Hypothesis=
’two-sided’. This argument is used to decide whether a two-sided
(labelled H1 earlier in the chapter) or a one-sided (labelled H2
earlier in the chapter) alternative hypothesis is to be used. For
example, one may wish to compare a new drug with an existing
drug. If the researcher is not certain if the new drug will be more
or less effective than the existing drug, a two-sided alternative
hypothesis should be chosen. If the researcher has strong reasons
to believe the new drug is more effective than the old one, a one-
sided alternative hypothesis should be chosen.

7. T, a positive integer that specifies the number of data sets sam-
pled from the null and alternative populations to determine the
required sample size. The default setting is T=10000, and the
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recommended value is at least 10000. This argument will be
elaborated in the next section.

The output results include the sample size required and the corre-
sponding probability that the Bayes factor is larger than the BFthresh
when either the null hypothesis or the alternative hypothesis is true:

Using N=xxx and b

P(BF0i>BFthresh|H0)=xxx

P(BFi0>BFthres}|Hi)=xxx

Using N=xxx and 2b

P(BF0i>BFthresh|H0)=xxx

P(BFi0>BFthresh|Hi)=xxx

Using N=xxx and 3b

P(BF0i>BFthresh|H0)=xxx

P(BFi0>BFthresh|Hi)=xxx

where xxx will be illustrated in the examples that will be given after
the next section.

2.6 Algorithm Used in Bayesian Sample Size
Determination

Figure 2.2 presents Algorithm 1 which is the basic algorithm used to
determine the sample size. The ingredients in the first four Steps
have been discussed in the previous section. In Step 5, T = 10000
data sets are sampled from each of the populations of interest (e.g.,
H0 vs H1), starting with a sample size N = 10 per group. In Step
6 the Bayes factor for each data set sampled from each hypothesis
is computed. In Step 7, the probabilities P (BF01 > BFthresh|H0) and
P (BF10 > BFthresh|Hi) are computed. If both are larger than η specified
in Step 4, the output presented in the previous section is provided. If
one or both are smaller than η, N is increased by 1 per group and the
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algorithm restarts in Step 5. To be able to account for the sensitivity
of the Bayes factor to the specification of the prior distribution, this
algorithm is executed using fractions equal to b, 2b, and 3b. The Ap-
pendix presents a refinement of Algorithm 1 that reduces the number
of iterations in Algorithm 1 to maximally 12.

2.7 Features of SSD

In this section features of SSD will be discussed. This will be done
using Tables 2.3-2.5, which were constructed using SSDttest. The ta-
bles differ in effect size: Table 2.3 is for effect size d = 0.2, Table 2.4
is for effect size d = 0.5, and Table 2.5 is for effect size d = 0.8. The
following features will be discussed: difference between the Bayesian
t-test and Bayesian Welch’s test, effect of the effect sizes, effect of the
fraction b used to construct the prior distribution, and comparison of
the two-sided and one-sided alternative hypothesis.

There seems to be little difference between the t-test and Welch’s
test with respect to the sample size required and the corresponding
probability that the Bayes factor is larger than BFthresh if either the
null or the alternative hypothesis is true. For example, for BFthresh=3,
two-sided testing, effect size d = 0.5, and η = 0.80 (see Table 2.4), the
sample size is 104 per group, and the probability that the Bayes factor
is larger than 3 if H0 is true is 0.92, and the probability that the Bayes
factor is larger than 3 if H1 is true is 0.80 for the t-test. The sample
size is 104 per group, and the probability that the Bayes factor is larger
than 3 if H0 is true is 0.92, and the probability that the Bayes factor is
larger than 3 if H1 is true is 0.80 for Welch’s test.

As expected, the sample size required decreases as the effect size
under Hi increases. For example, for the two-sided t-test, BFthresh=3
and η = 0.80, the sample sizes required for effect sizes 0.2, 0.5, and
0.8 are 769, 104, and 36 per group, respectively. This is because an
increase of the effect size makes the alternative more distinguishable
from the null hypothesis. However, for some special cases, the sample
size required for effect size 0.5 and 0.8 are the same, for example for
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the two-sided t-test, BFthresh=5 and η = 0.80 if the fraction 2b is used
for the prior distribution. The reason is that the sample size required
is the maximum of the sample size required if the null hypothesis is
true and the sample size required if the alternative hypothesis is true.
In cases like the examples given, the maximum sample size is deter-
mined by the null hypothesis, which is the same for effect size 0.5 and
0.8.

The sample size required increases with the fraction going from b
to 2b, and then to 3b if the null hypothesis is true, while the opposite
relation is found if the alternative hypothesis is true. This feature can
be explained as follows: according to Equations 2.9 and 2.10, as the
fraction gets larger, the prior variance decreases, the relative complex-
ity c0 gets larger, thus the Bayes factor under H0 gets smaller. Conse-
quently, the sample size required increases. Conversely, the sample
size required when the alternative hypothesis is true decreases. This
feature highlights that a sensitivity analysis is important: results de-
pend on the fraction of information used to specify the prior distribu-
tion.

As can be seen in Tables 2.3-2.5, the required sample sizes for one-
sided testing are always smaller than or about equal to the sample
sizes required for two-sided testing. Therefore, if a directional hy-
pothesis can be formulated, a one-sided testing is preferred over a
two-sided testing.

2.8 Practical Examples of SSD

In this section three examples of SSD will be given. The examples use
the function SSDttest because it allows researchers to choose Cohen’s
d, BFthresh, and η as they desire. As an alternative, researchers can also
consult Table 2.3, 2.4, and 2.5, although there sample sizes are only
given for a limited number of values for Cohen’s d, BFthresh and η.

Example 1. Researchers want to conduct an experiment to investi-
gate whether there is a difference in pain intensity as experienced by
users of two types of local anesthesia. The researchers would like to
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detect a medium effect size d = 0.5 with a two-sided t-test, when ei-
ther H0 or H1 with d = 0.5 is true, such that they have a probability of
0.80 that the resulting Bayes factor is larger than 3. The researchers
choose BFthresh = 3 because they want to get a compelling evidence for
the high-stakes experiment that one of the two types of anesthesia is
better able to reduce the pain intensity for users. As elaborated below,
the researchers can combine SSD with Bayesian updating to i) stop
sampling before a sample size of N = 104 per group if the true effect
size is larger than d = 0.5 used for SSD, or ii) to continue sampling be-
yond N = 104 per group if the true effect size is smaller than 0.50. The
sample size required to detect d = 0.5 is obtained using the following
call to SSDttest:

SSDttest(type=’equal’,Population_mean=c(0.5,0),var=c(1,1),

BFthresh=3,eta=0.80,Hypothesis=’two-sided’,T=10000)

The results are as follows:

Using N=104 and b

P(BF01>3|H0)=0.92

P(BF10>3|H1)=0.80

The following can be learned from these results:
The researchers need to collect 104 cases per type of local anesthe-

sia to get a probability of 0.92 that the resulting Bayes factor is larger
than 3 when H0 is true, and to get a probability of 0.80 that the result-
ing Bayes factor is larger than 3 when H1 is true and d = 0.5.

The researchers will execute the Bayesian updating as follows. First,
the researchers will start with 25% of the sample size per group, that
is, 26 cases per group. If the resulting BF01 or BF10 is larger than 3, the
desired support is achieved and updating can be stopped. Otherwise,
the researchers can add 26 cases per group and recompute and re-
evaluate the Bayes factors. Once the threshold of 3 has been achieved,
this process can be stopped, otherwise it can be repeated, also beyond
a sample size of 26 cases per group. The SSD executed before these
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researchers started collecting data is useful because it gives an indi-
cation of the sample size that are required to evaluated H0 and H1.
Updating ensures that the researchers use their resources optimally.

Example 2. Researchers want to carry out a test to explore whether
there is a difference between the yield obtained with a new corn fer-
tilizer and with a current fertilizer. They expect the new fertilizer is
more effective than the current one. The researchers want to deter-
mine the number of field plots used in a study of the test to detect an
effect size d = 0.2 with a one-sided t-test. When either H0 or H2 with
d = 0.2 is true they want to have a probability of 0.90 that the result-
ing Bayes factor is larger than 1. The researchers used BFthresh = 1 and
η = 0.90 because they want to get a Bayes factor to point to the true
hypothesis with a high probability. They are not necessarily interested
in strong evidence for the true hypothesis. The sample size required
is obtained using the following call to SSDttest:

SSDttest(type=’equal’,Population_mean=c(0.2,0),var=c(1,1),

BFthresh=1,eta=0.90,Hypothesis=’one-sided’,T=10000)

The results are as follows:

Using N=676 and b

P(BF02>1|H0)=0.99

P(BF20>1|H2)=0.90

The following can be learned from the output:
The researchers need to collect 676 field plots per fertilizer to get

a probability of 0.99 that the resulting Bayes factor is larger than 1 if
H0 is true, and a probability of 0.90.16 that the resulting Bayes factor
is larger than 1 if H2 is true.

Example 3. Researchers wish to compare two weight loss regimens
to determine whether there is a difference in the mean weight loss.
Past experiments have shown that the standard deviations are differ-
ent for these two regimens. Researchers want to determine the sample
size required to detect the effect size d = 0.5 with a two-sided Welch’s
test. When either H0 or H1 is true they want to have a probability of
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0.80 that the resulting Bayes factor is larger than 3. They also want
to execute a sensitivity analysis and therefore look at the sample sizes
required for b, 2b, and 3b. The required sample size is obtained using
the following call to SSDttest:

SSDttest(type=’unequal’,Population_mean=c(0.5,0),var=c(1.33,

0.67),BFthresh=3,eta=0.80,Hypothesis=’two-sided’,T=10000)

The results are as follows:

Using N=104 and b

P(BF01>3|H0)=0.92

P(BF10>3|H1)=0.80

Using N=96 and 2b

P(BF01>3|H0)=0.87

P(BF10>3|H1)=0.80

Using N=91 and 3b

P(BF01>3|H0)=0.83

P(BF10>3|H1)=0.80

From the results the following can be learned:
The output from SSDttest can be used to perform a sensitivity

analysis. As can be seen the required sample sizes for b, 2b and 3b
are 104, 96, and 91 per group, respectively. This implies that if the
researchers plan to execute a sensitivity analysis they should aim for a
sample size of at least 104 per group. The probabilities of supporting
H0 and H1 when they are true become more similar with bigger frac-
tions of information. If this is a desirable feature for the researchers,
they can use 3b which renders a required sample size of N = 91 per
group and η is about equal to 0.80 both when H0 and H1 are true.
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Test Using the Aproximate Adjusted Fractional Bayes Factor

2.9 Conclusion

The function SSDttest implemented in the R package SSDbain (https://
github.com/Qianrao-Fu/SSDbain) has been developed for sample size
determination for two-sided and one-sided hypotheses under a Bayesian
t-test or Bayesian Welch’s test using the AAFBF as implemented in
the R package bain. This function was used to construct sample size
tables that are counterparts to the frequently used tables in Cohen
(1992). If the tables are not applicable to the situation considered by
researchers, the SSDbain package can be used.

With the growing popularity of Bayesian statistics (Van de Schoot
et al., 2017), it is important tools for sample size determination in
the Bayesian framework become available. In this manuscript, we
developed software to calculate sample sizes within the framework
of Bayesian t-test and Bayesian Welch’s test hypotheses using time-
efficient algorithms. However, the SSDbain package also has its limita-
tion: we focussed on the AAFBF, but as was shortly highlighted in the
introduction to this chapter, there are other Bayes factors researchers
may use. Furthermore, we focussed on the Bayesian t-test and Welch’s
test, but in our future research we will extend to other statistical mod-
els, such as Bayesian ANOVA, ANCOVA, linear regression, and normal
linear multivariate models.

2.A Algorithm 2

We have described the basic Algorithm 1 used to determine the sam-
ple size. In this appendix a refinement of Algorithm 1 is described
that reduces the number of iterations of Algorithm 1 to maximally
12. It is very time consuming to iterate Steps 5-7 many times in Al-
gorithm 1, especially if the alternative hypothesis is one-sided. The
number of iterations will be reduced if Step 7 from Algorithm 1 is re-
placed by Algorithm 2. The basic principle of Algorithm 2 is to gradu-
ally adjust the sample size using a dichotomy algorithm until P (BF0i >
BFthresh|H0) and P (BFi0 > BFthresh|Hi) (i = 1 or 2) hold for sample sizes
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2.A. Algorithm 2

ranging between Nmin = 10 and Nmax = 1000. If it turns out that Nmax
is too small, its value will be increased. Using Algorithm 2 the num-
ber of iterations will be at most 12 (O(log2(1000 − 10)) + 2 = 12) see
https://en.wikipedia.org/wiki/Binary_search_algorithm for a
detail.

(1) If both P (BF0i > BFthresh|H0) and P (BFi0 > BFthresh|Hi) (i = 1 or 2)
are larger than η, set Nmax = Nmid; otherwise, set Nmin = Nmid,
where Nmid = (Nmin +Nmax)/2; and continue with (2).

(2) If Nmid = Nmin + 1, then N = Nmid, and the algorithm stops and
output is provided; otherwise return to Step 5 from Algorithm 1
with N equal to Nmid.
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2. Sample-Size Determination for the Bayesian T Test and Welch’s

Test Using the Aproximate Adjusted Fractional Bayes Factor

Table 2.1: Fit and complexity when H0 is true or H1 is true. ȳ1 and ȳ2
are the sample means of the two groups, s2 is the sample variance of
the two groups, N is the sample size per group.

ȳ1 ȳ2 s2 N f0 c0 BF01
H0 b

0 0 1 100 2.816 0.209 13.488
H1 0.5 0 1 100 0.009 0.209 0.045
H0 2b

0 0 1 100 2.816 0.295 9.537
H1 0.5 0 1 100 0.009 0.295 0.032
H0 3b

0 0 1 100 2.816 0.362 7.787
H1 0.5 0 1 100 0.009 0.362 0.026

Table 2.2: Fit and complexity when H0 is true or H2 is true. ȳ1 and ȳ2
are the sample means of the two groups, s2 is the sample variance of
the two groups, N is the sample size per group.

ȳ1 ȳ2 s2 N f0 c0 f2 c2 BF01 BF21 BF02
H0 b

0 0 1 100 2.816 0.209 0.379 0.500 13.488 0.758 17.788
H2 0.5 0 1 100 0.009 0.209 1.000 0.500 0.045 1.999 0.022
H0 2b

0 0 1 100 2.816 0.295 0.379 0.500 9.537 0.758 12.578
H2 0.5 0 1 100 0.009 0.295 1.000 0.500 0.032 1.999 0.016
H0 3b

0 0 1 100 2.816 0.362 0.379 0.500 7.787 0.758 10.270
H2 0.5 0 1 100 0.009 0.362 1.000 0.500 0.026 1.999 0.013
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Figure 2.1: The sampling distribution of BF01 under H0 and BF10 un-
der H1. The vertical dashed line denotes the BFthresh = 3. The grey
area visualizes η = 0.80. Note that, as will be illustrated in Table 2.3,
2.4, and 2.5 later in this chapter, the sample size is the maximum of
26 and 104.
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Chapter 3

Sample Size Determination for
Bayesian ANOVAs with
Informative Hypotheses1

Researchers can express their expectations with respect to the group
means in an ANOVA model through equality and order constrained
hypotheses. This chapter introduces the R package SSDbain 2, which
can be used to calculate the sample size required to evaluate (infor-
mative) hypotheses using the Approximate Adjusted Fractional Bayes
Factor (AAFBF) for one-way ANOVA models as implemented in the R
package bain. The sample size is determined such that the probability
that the Bayes factor is larger than a threshold value is at least η when
either of the hypotheses under consideration is true. The Bayesian
ANOVA, Bayesian Welch’s ANOVA, and Bayesian robust ANOVA are

1This chapter will be submitted as Fu, Q., Moerbeek, M., & Hoijtink, H. Sample
Size Determination for Bayesian ANOVAs with Informative Hypotheses.
Author contributions: QF, MM, and HH designed the research. QF developed the
software package, and wrote the paper. MM and HH gave feedback on software
development, constructing and writing the paper. All analyses presented in the
chapter can be reproduced using the research archive that can be found on github
at https://github.com/Qianrao-Fu/research-archive.

2https://github.com/Qianrao-Fu/SSDbain
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3. Sample Size Determination for Bayesian ANOVAs with

Informative Hypotheses

available. Using the R package SSDbain and/or the tables provided
in this chapter, researchers in the social and behavioral sciences can
easily plan the sample size if they intend to use a Bayesian ANOVA.

3.1 Introduction

In a classical one-way ANOVA, two hypotheses, the null hypothesis
H0 and the alternative hypotheses Ha are contrasted:

H0 : µ1 = µ2 = · · · = µK (3.1)

versus
Ha : not all means are equal, (3.2)

where µk denotes the mean for group k = 1,2, ...,K , and K denotes the
number of groups.

Statistical power is the probability to correctly reject the null hy-
pothesis when an effect exists in the population. Cohen (1988, 1992)
published some of the most cited literature on power analysis; he pro-
posed the effect size measure f = σm/σ , where σm denotes the standard
deviation of the means of the K groups, and σ the common within-
group standard deviation. The classical sample size table of the one-
way ANOVA based on the F-test (Cohen, 1992) indicates that in the
case of three groups, 322, 52, or 21 subjects per group are needed to
obtain a power of 0.8 to detect a small (f = 0.1), medium (f = 0.25),
or large (f = 0.4) effect size at a Type I error rate α = 0.05. Required
sample sizes for other scenarios can be calculated using software for
power analysis and optimal study design, such as G*Power (Faul et al.,
2007; Mayr et al., 2007; Faul et al., 2009), nQuery Advisor (J. Elashoff,
2007), and PASS (Hintze, 2011). Power analysis has become more
important in a scientific world with competition for limited funding
for research grants. Funding agencies often require value for money:
if an effect size exists in the population then it should be detected
with sufficient probability. However, many studies in the behavioral
and social sciences are underpowered, mainly because of insufficient
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3.1. Introduction

funding or numbers of subjects willing to participate. As well as a re-
duced probability of detecting an important effect size, underpowered
research causes many problems, including overestimation of the ef-
fect size, poor replicability of research findings, and thus an increased
risk of drawing incorrect conclusions. For relevant articles see Fraley
and Vazire (2014); Maxwell (2004); Simonsohn et al. (2014); Dumas-
Mallet, Button, Boraud, Gonon, and Munafò (2017), and Szucs and
Ioannidis (2017).

Recently, null-hypothesis significance testing (NHST) has been crit-
icized in numerous articles. Unnecessary details are not given in this
chapter, but see the typical references Harlow, Mulaik, and Steiger
(1997/2016); Nickerson (2000); Wagenmakers (2007); Masicampo and
Lalande (2012), and Wicherts et al. (2016). Alternatives such as Bayesian
statistics have as a consequence become increasingly popular over the
past decade (Van de Schoot et al., 2017; Vandekerckhove et al., 2018;
Wagenmakers et al., 2016). Among them, the Bayes factor is the most
important tool to evaluate the competing hypotheses. The Bayes factor
is the measurement of the relative evidence between two competing
hypotheses. For example, if H0 vs. H1, and the Bayes factor BF01 = 10,
then the support for H0 is 10 times more than H1. The Bayes fac-
tor provide evidence not only in favor of the alternative hypothesis,
but also, in contrast to the p-value, in favor of the null hypotheses.
The Bayes factor quantifies the strength of current data to support for
H0 and H1 respectively, which is more balanced than the traditional
NHST where the Bayes factor is more balanced in terms of support
for H0 and H1, and thus, its tendency to reject H0 is less strong. Un-
der the traditional NHST hypothesis, as long as the data collected are
enough, the researcher can obtain p < 0.05 and thus reject H0; in con-
trast to the NHST, the Bayes factor tends to be stable with the increase
in data. The Bayes factor does not depend on the unknown or nonex-
istent sampling plan, whereas the p-value is affected by the sampling
plan. In addition, the traditional null and alternative hypotheses
as specified by (1) and (2) may not reflect the researcher’s expecta-
tions. Researchers can express their expectations with regard to the
ordering of the group means µ1,µ2, ...,µK in an informative hypothesis
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(Hoijtink, 2012). For example, consider a comparison of the average
body heights of adults in the Netherlands, China, and Japan, as de-
noted by µN , µC and µJ , respectively. Informative hypotheses may
be formulated on the basis of observations, expectations or findings in
the literature. One example is hypothesis H1 : µN > µC > µJ . It is worth
mentioning that the Bayes factor can be used not only to compare the
null hypothesis with alternative hypotheses, but also to compare two
informative hypotheses directly. Accordingly, in NHST, if the ordered
hypothesis is included, multiple testing should be carried out, which
leads to increased chances of false positive results. Software to cal-
culate the Bayes factor are the R package BayesFactor, the R package
BFpack, and the R package bain, which make the Bayes factor readily
accessible to applied researchers. Therefore, it is important that sam-
ple size calculations for the Bayesian approach to hypothesis testing
become available to researchers in the behavioral and social sciences.

Recently, a sequential Bayesian t-test (Schönbrodt et al., 2017) was
developed that can, when applicable, avoid an a priori sample size
calculation. A sequential test (Wald, 1945) allows researchers to add
additional observations at every stage of an experiment depending on
whether the target strength of evidence is reached, that is, the size of
the Bayes factor is large enough or a decision rule whether to i) ac-
cept the hypothesis being tested; ii) reject the hypothesis being tested;
or iii) continue the experiment by making additional observations is
satisfied.

However, a sequential test based on Bayesian updating is not al-
ways possible, for example, when the research population is small
(e.g., a rare disease or cognitive disorder), when the study is longi-
tudinal and runs for many years, when a research plan with an a pri-
ori sample size calculation is to be submitted to an ethical committee,
or when researchers want to have an indication of the sample sizes
needed even when they use a sequential design. In these situations
sample size determination is necessary. In practice, a combination of
sample size determination and Bayesian updating is the best choice.
For a more extensive overview of the role of sample size determina-
tion and Bayesian updating, the reader is referred to Fu, Hoijtink, and
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3.2. One-way ANOVAs, (Informative) Hypotheses, and Bayes Factor

Moerbeek (2021).
Throughout this chapter sample size determination (SSD) for the

comparison of null, informative, and alternative hypotheses under a
one-way ANOVA in the Bayesian framework, which builds on the sam-
ple size calculations for t-tests discussed in Fu, Hoijtink, and Moer-
beek (2021); Schönbrodt and Wagenmakers (2018) and Stefan et al.
(2019), will be performed. However, the data observed in social and
behavioral research are often non-normally distributed or of homoge-
neous variance, see, for example, Blanca, Arnau, López-Montiel, Bono,
and Bendayan (2013); Coombs, Algina, and Oltman (1996); Glass,
Peckham, and Sanders (1972); Harwell, Rubinstein, Hayes, and Olds
(1992); Keselman et al. (1998) and Micceri (1989). To solve these prob-
lems, alternative ANOVAs are also considered: (1) SSD for Bayesian
Welch’s ANOVA is available when homogeneity of variance does not
hold; and (2) SSD for Bayesian robust ANOVA is available when ho-
mogeneity of variance and normality of residuals do not hold and/or
when the data contain outliers.

The outline of this chapter is as follows. First, the models used in
the article are introduced, the informative hypotheses that are eval-
uated are described, and the Approximate Adjusted Fractional Bayes
Factor (AAFBF) approach as implemented in the R package bain is
elaborated. Subsequently, sample size determination will be intro-
duced, features of SSD will be highlighted, and examples will be pro-
vided and discussed. The chapter ends with a short conclusion.

3.2 One-way ANOVAs, (Informative)
Hypotheses, and Bayes Factor

In this chapter, K mutually independent group means, µ1,µ2, · · · ,µK
are compared. Three different types of ANOVA models are consid-
ered:

Model 1: ANOVA, that is, the within-group variances for the K
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groups are equal

ytk =
K∑
k=1

µkDtk + ϵtk ,ϵtk ∼N (0,σ2), (3.3)

Model 2: Welch’s ANOVA, that is, the within-group variances for
the K groups are unequal

ytk =
K∑
k=1

µkDtk + ϵtk ,ϵtk ∼N (0,
K∑
k=1

σ2
kDtk), (3.4)

Model 3: Robust ANOVA, that is, the within-group variances for
the K groups are unequal, and the distribution of the residuals is non-
normal and/or the data contain outliers

ytk =
K∑
k=1

µk,ROBDtk + ϵtk ,ϵtk ∼ fk(ϵtk), (3.5)

where ytk for person t = 1, · · · ,N belonging to group k = 1,2, · · · ,K is
the dependent variable, N denotes the sample size per group, Dtk = 1
denotes that person t is a member of group k and 0 otherwise, ϵtk
denotes the error in prediction for person t in group k, fk(ϵtk) is an
unspecified distribution of the residuals in group k, σ2 denotes the
common within-group variance for each group in case of ANOVA, σ2

k
denotes the within-group variance of group k in the case of the Welch’s
ANOVA, and µk,ROB is the robust estimator of the population mean.

In this chapter, sample size will be determined under the following
situations:

Situation 1: If the researchers believe that nothing is going on or
something else is going on but they do not know what, the sample size
will be determined for the comparison of

H0 : µ1 = µ2 = · · · = µK versus Ha, where Ha: not all means are equal;
Situation 2: Many researchers have clear ideas or expectations with

respect to what might be going on. These researchers might believe
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that nothing is going on or have a specific expectation about the or-
dering of the means. Therefore the sample size will be determined for
a comparison of

H0 : µ1 = µ2 = · · · = µK versus Hi : µ1∗ > µ2∗ > · · · > µK∗ ;
where 1∗,2∗, · · · ,K∗ are a re-ordering of the numbers 1,2, · · · ,K ;
Situation 3: Or, continuing Situation 2, researchers may want to

compare their expectation with its complement. Therefore the sample
size will be determined for a comparison of

Hi : µ1∗ > µ2∗ > · · · > µK∗ versus Hc: not Hi ;
Situation 4: The researchers have two competing expectations
Hi : µ1∗ > µ2∗ > · · · > µK∗ versus Hj : µ1# > µ2# > · · · > µK# ,
where 1#,2#, · · · ,K# denote a re-ordering of numbers 1,2, · · · ,K that

is different from Hi . Note that, SSD is also possible if some of the ">"
in Hi or Hj are replaced by "=".

The AAFBF, as implemented in the R package bain is used to deter-
mine the relative support in the data for a pair of hypotheses. The
interested reader is referred to Gu et al. (2018); Hoijtink, Gu, and
Mulder (2019) and Hoijtink, Mulder, van Lissa, and Gu (2019) for
the complete statistical background. Here only the main features of
this approach are presented. If, for example, BFij = 10, this implies
that the data are ten times more likely to have been observed un-
der Hi than under Hj . In this manuscript, the AAFBF is used be-
cause it is currently the only Bayes factor available that can handle the
four situations introduced above for regular ANOVA, Welch’s ANOVA,
and robust ANOVA. In what follows, the AAFBF implementation for
ANOVAs is described. First, the Bayes factor with which H0 and Hi
can be compared to Ha are introduced. Subsequently, BFij and BFic
will be introduced.

Let Hz denote either of H0 and Hi , and note that for robust ANOVA
µ has to be replaced by µROB, then

BFza =
fz
cz

=

∫
µ∈Hz

ga(µ)dµ∫
µ∈Hz

ha(µ)dµ
, (3.6)
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where fz and cz are the fit and complexity of Hz relative to Ha, re-
spectively, ga(µ) denotes a normal approximation to the posterior dis-
tribution of µ under Ha, and ha(µ) denotes the corresponding prior
distribution of µ under Ha. The fit is the proportion of the posterior
distribution ga(·) in agreement with Hz, and the complexity is the pro-
portion of the prior distribution ha(·) in agreement with Hz. The Bayes
factor (BF) for Hi against Hj is:

BFij =
BFia

BFja
=

fi
/
ci

fj
/
cj
, (3.7)

and the BF of Hi versus Hc is:

BFic =
BFia

BFca
=

fi
/
ci

(1− fi)
/
(1− ci)

. (3.8)

The posterior distribution used in the AAFBF is a normal approxi-
mation of the actual posterior distribution of the K group means. This
can be justified using large sample theory (Gelman et al., 2013, p. 101).
This normal approximation can be specified using the estimates of µ,
the residual variance s2 and N . For the regular ANOVA (Model 1), this
renders:

ga(µ) =
"

µ∈µ
πa(µ,σ

2)dµdσ2 =
∫
µ∈µ

πa(µ)dµ = N

[ µ̂
]
,


ŝ2/N 0

. . .
0 ŝ2/N


 ;

(3.9)
for Welch’s ANOVA (Model 2), this renders:

ga(µ) = N

[ µ̂
]
,


ŝ2

1/N 0
. . .

0 ŝ2
K /N


 ; (3.10)

where µ̂ = [µ̂1, µ̂2, · · · , µ̂K ] denotes the maximum likelihood estimates
of the K group means, ŝ2 denotes the unbiased estimate of the residual
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variance, and ŝ2
1, ŝ2

2, · · · , ŝ2
K denote unbiased estimates of the K within-

group variances. For the robust ANOVA (Model 3),

ga(µ) = N


[
µ̂ROB

]
,


ŝ2

1,ROB/N 0
. . .

0 ŝ2
K,ROB/N


 . (3.11)

where µ̂ROB is the 20% trimmed mean, which according to Wilcox
(2017, pp. 45–93) is the best choice, and ŝ2

k,ROB is a robust estimate
of the residual variance in Group k, which is based on the Winsorized
variance (see Wilcox, 2017, pp. 60-64). If the data are severely non-
normal or contain outliers, the estimates of means can be very poor
estimates of central tendency, and the within-group variances can be
very poor estimates of the variability within a group (Bosman, 2018);
therefore, in these situations it may be preferable to use µ̂ROB and
ŝ2
k,ROB for k = 1, · · · ,K .

The prior distribution is based on the adjusted (Mulder, 2014) frac-
tional Bayes factor approach (O’Hagan, 1995). As is elaborated in Gu
et al. (2018); Hoijtink, Gu, and Mulder (2019) for the regular ANOVA
with homogeneous within-group variances (Model 1), the prior distri-
bution is

ha(µ) = N


[

0
]
,


1
b ×

ŝ2

N 0
. . .

0 1
b ×

ŝ2

N


 ; (3.12)

and, for the Welch’s ANOVA with group specific variances (Model 2),
the prior distribution is

ha(µ) = N


[

0
]
,


1
b ×

ŝ2
1
N 0

. . .

0 1
b ×

ŝ2
K
N


 ; (3.13)
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and, for the robust ANOVA (Model 3), the prior distribution is

ha(µ) = N


[

0
]
,


1
b ×

ŝ2
1,ROB
N 0

. . .

0 1
b ×

ŝ2
K,ROB
N


 . (3.14)

For the hypotheses considered in this chapter, the mean of the prior
distribution should be the origin 0. As is elaborated in Mulder (2014),
this choice renders a quantification of complexity in accordance with
Occam’s razor and, as is elaborated in Hoijtink, Mulder, et al. (2019),
it renders a Bayes factor that is consistent. The variances appearing
in the prior distribution are based on a fraction of the information
in the data. For each group in an ANOVA this fraction is b = J

K ×
1
N

(Hoijtink, Gu, & Mulder, 2019). The choice for parameter J is in-
spired by the minimal training sample approach (Berger & Pericchi,
1996, 2004): it is the number of independent constraints used to spec-
ify the hypotheses under consideration, because these can be seen as
the number of underlying parameters (the differences between pairs
of means) that are of interest. Specifically, if H0 : µ1 = µ2 = µ3 vs.
Hi : µ1 > µ2 > µ3 is considered, J is equal to 2. The choice for mini-
mum training samples is, to some degree, arbitrary. It is, in general,
common in Bayesian analyses to execute sensitivity (to the prior distri-
bution) analyses. Hence alternative choices of b = 2J

K ×
1
N and b = 3J

K ×
1
N

are also considered in this chapter. Note that, prior sensitivity applies
only to Situations 1 and 2; the Bayes factors computed for Situations
3 and 4 are not sensitive to the choice of b (see Mulder, 2014).

3.3 Sample Size Determination for One-Way
ANOVAs

SSD for the Bayesian one-way ANOVA is implemented in the R pack-
age SSDbain 3. This section describes the specific ingredients needed

3SSDbain comes with a user manual and can be installed from https://github

.com/Qianrao-Fu/SSDbain. Further information on bain can be found at https://
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for the functions SSDANOVA and SSDANOVA_robust in the R pack-
age SSDbain. The interested reader is referred to Appendices A and B
for an elaboration of the SSD algorithm. After installing the R pack-
age SSDbain, the following Call 1 and Call 2 are used to calculate the
sample size per group for regular ANOVA and Welch’s ANOVA:

Call 1: using Cohen’s f (Cohen, 1992) to specify the populations
of interest

#load SSDbain package

library(SSDbain)

SSDANOVA(hyp1="mu1=mu2=mu3",hyp2="Ha",type="equal",

f1=0,f2=0.25,var=NULL,BFthresh=3,eta=0.8,T=10000,seed=10)

Call 2: using means and variances to specify the populations of
interest

#load SSDbain package

library(SSDbain)

SSDANOVA(hyp1="mu1=mu2=mu3",hyp2="Ha",type="equal",

f1=c(0,0,0),f2= c(5.5,4.5,2),var=c(4,4,4),BFthresh=3,

eta=0.8,T=10000,seed=10)

and the Call 3 below is used for a robust ANOVA:

#load SSDbain package

library(SSDbain)

SSDANOVA_robust(hyp1="mu1=mu2=mu3",hyp2="Ha",f1=0,

f2=0.25,skews=c(0,0,0),kurts=c(0,0,0),var=c(1.5,0.75,0.75),

BFthresh=3,eta=0.8,T=10000,seed=10)

The following arguments appear in these calls:

1. hyp1 and hyp2, strings that specify the hypotheses of interest. If
the unconstrained hypothesis is used, hyp2="Ha"; if the comple-
ment hypothesis is used, hyp2="Hc". In case of three groups the
default setting is hyp1="mu1=mu2=mu3", and hyp2="mu1>mu2
>mu3", which generalizes seamlessly to more than three groups.

informative-hypotheses.sites.uu.nl/software/bain/
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2. type, a string that specifies the type of ANOVA. If one expects
that the K within-group variances are equal, type="equal", oth-
erwise type="unequal".

3. f1 and f2, parameters used to specify the populations correspond-
ing to hyp1 and hyp2, respectively. There are two options. In
Call 1 given above f1 and f2 denote Cohen’s f = σµ/σ where σµ
denotes the standard deviation of the means of the K groups, and
σ denotes the common within-group standard deviation. If type
= "equal", the var=NULL is required, where var = NULL denotes
that the variances do not have to be specified. If type = "un-
equal", the var has to be specified by the users (see the next ar-
gument for details). In Call 2 given above, f1 and f2 contain the
population means corresponding to both hypotheses hyp1 and
hyp2. This option can always be used and requires the specifica-
tion of var. In Call 3, the combination of Cohen’s f and within-
group variances or the combination of means and variances are
used to specify the populations of interest. In Appendix 3.C it
is elaborated how population means are computed if f1 and f2
denote Cohen’s f .

4. var, vector of length K that specifies the within-group variances
of the K groups. If type = "equal" and f1 and f2 are Cohen’s
f , the specification var = NULL implies that each within-group
variance is set to 1. In case of type = "unequal" or Call 3, the user
needs to input Cohen’s f and the variances for each group. The
corresponding population means can be computed. Appendix
3.C elaborates how in both cases the corresponding population
means are computed.

5. skews and kurts, vectors of length K that specify the skewness
and kurtosis for the K groups compared. Here kurtosis means
the true kurtosis minus 3, that is, the kurtosis is 0 when the dis-
tribution is normal. The default setting is skews=c(0,0,0) and
kurts=c(0,0,0), which renders a normal distribution. Note that

58



3.3. Sample Size Determination for One-Way ANOVAs

the relationship kurtosis ≥ skewness2 − 2 should hold (Shohat,
1929).

Two situations can be distinguished. If researchers want to ex-
ecute an ANOVA that is robust against outliers, both skews and
kurts are zero vectors with dimension K . Outliers can be ad-
dressed in this manner because robust estimates of the mean
and its variance obtained for data sampled from a normal dis-
tribution (that is, without outliers) are similar to the robust esti-
mates obtained for data sampled from a normal distribution to
which outliers are added. If researchers want to address skewed
or heavy-tailed data, they have to specify the expected skewness
and kurtosis for each group.

The following gives guidelines for choosing appropriate values
for skewness and kurtosis. If the population distribution is left-
skewed, the skewness is a negative value; if the population dis-
tribution is right-skewed, the skewness is a positive value. The
commonly used example of a distribution with a positive skew-
ness is the distribution of salary data where many employees
earn relatively little, whereas just a few employees have a high
salary. In addition, typical response time data often show posi-
tive skewness because long response times are less common (Palmer,
Horowitz, Torralba, & Wolfe, 2011). The high school GPA of
students who apply for college often shows a negative skew-
ness. Furthermore, in psychological research, scores on easy
cognitive tasks tend to be negatively skewed because the major-
ity of participants can complete most tasks successfully (Wang,
Zhang, McArdle, & Salthouse, 2008). If the population distribu-
tion is heavy-tailed relative to a normal distribution, the kurto-
sis is larger than 0; if the population distribution is lighter-tailed
than a normal distribution, the kurtosis is smaller than 0.

The values to be used for the skewness and kurtosis can be cho-
sen based on a meta-analysis or literature review (e.g., Schmidt
& Hunter, 2015). The absolute value of the skewness is typi-
cally smaller than 3 in psychological studies. As a general rule,
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skewness and kurtosis values that are within ±1 of the normal
distribution’s skewness of 0 and kurtosis of 0 indicate sufficient
normality. Blanca et al. (2013) studied the shape of the distri-
bution used in real psychology, and found that 20% of the dis-
tribution showed extreme non-normality. Therefore, it is essen-
tial to consider robust ANOVA when non-normal distribution
is involved. After determining the values of the skewness and
kurtosis relevant for their populations, researchers can use SS-
DANOVA_robust to determine the sample sizes needed for a ro-
bust evaluation of their hypotheses for data sampled from pop-
ulations that are skewed and/or show kurtosis. The non-normal
data are generated from a generalization of the normal distribu-
tion that accounts for skewness and kurtosis. The Tukey g-and-
h family of non-normal distributions (see Headrick, Kowalchuk,
& Sheng, 2008; Jorge & Boris, 1984) is commonly used for uni-
variate real data generation in Monte Carlo studies. If the re-
searchers input the skewness and kurtosis, g and h can be ob-
tained (Headrick et al., 2008). The data can be generated as fol-
lows. First, T (see point 8 for a explanation on Page 59) data
sets with sample size N from the standard distribution are sim-
ulated; second, observations are transformed into a sample from
the g-and-h-distribution as below

if g , 0

T (X) = A+Bexp(h/2X2)(exp(gX)− 1)/g, (3.15)

if g = 0

T (X) = A+Bexp(h/2X2)X, (3.16)

where X ∼ N (0,1), A is the mean parameter, B is the standard
deviation parameter, g is the skewness parameter, and h is the
kurtosis parameter.
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3.3.1 Intermezzo: The Probability That The Bayes
Factor Is Larger Than a Threshold Value

This intermezzo elaborates how the required sample size is determined
once the populations corresponding to the two competing hypotheses
have been specified, that is, once the population group means, vari-
ances, and possibly skewness and kurtosis have been specified. Figure
3.1 portrays the distributions of the Bayes factor under H0 : µ1 = µ2 =
µ3 and H1 : µ1 > µ2 > µ3, that is, when data are repeatedly sampled
from H0 and for each data set BF01 is computed, what is the distribu-
tion of BF01, and, when data are repeatedly sampled from H1 and for
each data set BF10 is computed, what is the distribution of BF10. Fig-
ure 3.1a shows the distribution obtained using N = 18 per group, and
Figure 3.1b shows the distribution obtained using N = 93 per group.
To determine these sample sizes, two criteria are specified. First, what
is the required size of the Bayes factor to be denoted by BFthresh; and,
second, what should be the minimum probability that BF01 and BF10
are larger than BFthresh, denoted by P (BF01 > BFthresh|H0) ≥ η and
P (BF10 > BFthresh|H1) ≥ η, respectively. As can be seen in Figure 3.1,
BFthresh = 3 and η = 0.90, that is, with N = 18 P (BF01 > 3|H0) ≥ 0.90,
and with N = 93 P (BF10 > 3|H1) ≥ 0.90. Therefore, to fulfill the criteria
for both H0 and H1, N = 93 persons per group are required.

Two aspects of sample size determination need to be elaborated:
how to choose BFthresh and how to choose η. The choice of the BFthresh
is subjective, common values are 3, 5, and 10. In high-stakes research,
such as a clinical trial to compare a new medication for cancer to a
placebo and a standard medication, one would prefer a large BFthresh.
In low-stakes research, such as an observational study on the compar-
ison of ages of customers at three different coffeehouses, one may use
a smaller BFthresh. The second aspect is how to determine η. It should
be noted that 1-η is the Bayesian counterpart of the Type I error rate
if hyp1 is true, and the Bayesian counterpart of the Type II error rate
if hyp2 is true. If the consequences of failing to detect the effect could
be serious, such as in toxicity testing, one might want a relatively high
η such as 0.90. In studies where one may only be interested in large
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effects, an error in detecting the effect may not have such serious con-
sequences. Here an η = 0.80 may be sufficient.
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(a) N = 18 when H0 is true
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(b) N = 93 and f = 0.25 when H1 is true

Figure 3.1: The sampling distribution of BF01 under H0 and BF10 un-
der H1. The vertical dashed line represents BFthresh = 3, and the gray
area denotes η, that is, the probability that the Bayes factor is larger
than 3.

6. BFthresh, a numeric value not less than 1 that specifies the re-
quired size of the Bayes factor. The default setting is BFthresh=3.
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7. eta, a numeric value that specifies the probability that the Bayes
factor is larger than BFthresh if either of the competing hypothe-
ses is true. The default setting is eta=0.80.

8. T, a positive integer that specifies the number of data sets sam-
pled from the populations corresponding to the two hypotheses
of interest. A larger number of samples returns a more precise
sample size estimate but takes longer to run. We recommend
that users start with a smaller number of samples (e.g., T=1000)
to obtain a rough estimate of the sample size before confirming
it with the default setting T=10000.

9. seed, a positive integer that specifies the seed of R’s random
number generator. It should be noted that different data sets
are simulated in Step 8 if a different seed is used, and thus,
that the results of sample size determination may be slightly dif-
ferent. However, the sample sizes obtained using two different
seeds give an indication of the stability of the results (this will
be highlighted when discussing Table 3.4). The default setting is
seed=10.

The results of the functions SSDANOVA and SSDANOVA_robust in-
clude the sample size required per group and the corresponding prob-
ability that the Bayes factor is larger than BFthresh when either of the
competing hypotheses is true. For example, if the following call to
SSDANOVA is executed

library(SSDbain)

SSDANOVA(hyp1="mu1=mu2=mu3",hyp2="Ha",type="equal",f1=0,f2=

0.25,var=NULL,BFthresh=3,eta=0.8,T=10000,seed=10)

the results for b based on the minimum value of J , and the results for
b based on 2J and 3J (with the aim of addressing the sensitivity to the
specification of the prior distribution) are as follows:

using N=93 and b=0.007
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P(BF0a>3|H0)=0.977

P(BFa0>3|Ha)=0.801

using N=83 and b=0.016

P(BF0a>3|H0)=0.949

P(BFa0>3|Ha)=0.802

using N=77 and b=0.026

P(BF0a>3|H0)=0.918

P(BFa0>3|Ha)=0.802

Further interpretation of the results of SSD is given in the form of
three examples that are presented after the next section.

3.4 Features of Sample Size Determination
for One-Way ANOVAs

In this section sample sizes are given based on classical hypotheses, in-
formative hypotheses, and their complement hypotheses for one-way
ANOVAs with three groups when the effect size is Cohen’s f = 0.1,
f = 0.25, and f = 0.4. Table 3.1 shows the populations correspond-
ing to H1, H2, Ha, and Hc for three different effect sizes when the
pooled within-group variance is 1. Tables 3.2-3.5 show the sample
size and the corresponding probability that the Bayes factor is larger
than BFthresh for regular, Welch’s and robust ANOVA for H0 vs. Ha, H0
vs. H1, H1 vs. H2, and H1 vs. Hc, respectively. Table 3.6 displays the
robust ANOVA for moderately skewed, extremely skewed, and heavy-
tailed populations. All the tables are obtained with set.seed=10. To
illustrate the stability of the results when using T=10000, in Table
3.4 additionally the results are obtained using set.seed=1234. Based
on the results presented in these tables numerous features of SSD are
highlighted.
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Comparing Table 3.3 with Table 3.2, it can be seen that the sam-
ple size required is smaller if H0 is compared to the order constrained
hypothesis H1 instead of to the unconstrained hypothesis Ha. For ex-
ample, if effect size f = 0.25, BFthresh = 3, η = 0.8, and regular ANOVA
are chosen, the sample size required is 93 per group if H0 is compared
to Ha, whereas the sample size required is 71 per group if H0 is com-
pared to H1. This is because H1 is more precise than Ha and it is easier
to find evidence against or for a more precise hypothesis.

Comparing Table 3.4 with Table 3.3, it can be clearly seen that the
comparison of two non-nested hypotheses like H1 and H2 requires a
lower sample size than the comparison of nested hypotheses like H0
and H1 (H0 is in fact on the boundary of H1). For example, if effect
size f = 0.25, BFthresh = 3, η = 0.8, and regular ANOVA is used, the
sample size required is 71 per group if H0 is compared to H1, whereas
the sample size required is 13 per group if H1 is compared to H2. The
same phenomenon can be observed when comparing Table 3.4 (H1
vs. H2) with Table 3.5 (H1 vs. Hc). Although non-nested hypotheses
are compared in both cases, H2 is much more precise than Hc and
therefore the required sample size for the comparison of H1 with H2 is
smaller than for the comparison of H1 with Hc. In summary the more
specific the hypotheses that are evaluated, the smaller the required
sample size. The sample size is further reduced if two non-nested
hypotheses are compared.

From Tables 3.2 to 3.5, it appears that the sample size required is
smaller for a regular ANOVA than for a Welch’s ANOVA. For exam-
ple, as shown in Table 3.2, if effect size f = 0.25, BFthresh = 3, η = 0.8,
and H0 vs. Ha, the sample size required for regular ANOVA is 93 per
group, whereas the sample size required is 102 per group for Welch’s
ANOVA. However, this is not always the case. The sample size re-
quired for Welch’s ANOVA may be smaller than that required for a
regular ANOVA. The main determinant is the order of the size of the
variances relative to the order of the means.

For the robust ANOVA, two situations are evaluated. First, if the
data include outliers, Tables 3.2-3.5 apply, because sampling from a
normal distribution and using 20% trimming is a good approxima-
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tion of sampling from a normal with outliers. Second, if the data are
skewed or heavy-tailed, the results in Table 3.6 apply. Three situations
are distinguished: skewness=0.61 and kurtosis=0.67, skewness=1.75
and kurtosis=5.89, and skewness=0 and kurtosis=6.94. These three
situations represent moderately skewed, extremely skewed, and ex-
tremely heavy-tailed distributions that are often encountered in psy-
chological research (Micceri, 1989; Cain, Zhang, & Yuan, 2017). From
Tables 3.2 to 3.5, it can be seen that the sample size required is the
largest for a robust ANOVA. Comparing Table 3.3 in which the data
had a skewness of 0 and a kurtosis of 0 with Table 3.6, it can be seen
that the required sample sizes are larger if a robust ANOVA is used
to evaluate hypotheses using data sampled from skewed and heavy-
tailed population distributions.

In addition, the extremely skewed distribution needs a sample size
smaller than a moderately skewed distribution, and the extremely
heavy-tailed distribution needs a sample size higher than the skewed
distribution.

Finally, as illustrated in Table 3.4, when T=10000 is used, the re-
sults of SSD are stable, that is, the required sample sizes and η1 and
η2 are irrelevantly different if different seeds are used. This was also
observed for the other tables but these results are not reported in this
chapter.

3.5 Examples of Sample Size Determination
for One-Way ANOVAs

To demonstrate how to use the functions SSDANOVA and SSDANOVA
_robust to execute SSD for one-way ANOVAs in practice, we introduce
three practical examples in the following. The first example presents
the SSD process for the regular ANOVA, the second presents the SSD
process for Welch’s ANOVA, and the third presents the SSD process
for the robust ANOVA.

Example 1: A team of researchers in the field of educational sci-
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ence wants to conduct a study in the area of mathematics education
involving different teaching methods to improve standardized math
scores. The study will randomly assign fourth grade students who are
randomly sampled from a large urban school district to three differ-
ent teaching methods. The teaching methods are as follows: 1) the
traditional teaching method where the classroom teacher explains the
concepts and assigns homework problems from the textbook; 2) the
intensive practice method, in which students fill out additional work
sheets both before and after school; and 3) the peer assistance learning
method, which pairs each fourth grader with a fifth grader who helps
them learn the concepts. At the end of the semester all students take
the Multiple Math Proficiency Inventory (MMPI). The researchers ex-
pect that the traditional teaching group (Group 1) will have the lowest
mean score and that the peer assistance group (Group 3) will have the
highest mean score. That is,

H1: µ3 > µ2 > µ1.
This hypothesis is compared to H0, which states that the standard-

ized math scores are the same in the three conditions.
H0: µ1 = µ2 = µ3.
The researchers guess a priori that Group 1 has a mean of 550,

Group 2 has a mean of 560, and Group 3 has a mean of 580. Based on
prior research, the common standard deviation σ is set to 50. There-
fore the effect size is f = σm

σ = 0.249. The researchers decide to use
BFthresh = 3 because they are happy to obtain some evidence in favor
of the best hypothesis. They also choose η = 0.8 because their research
is not high-stakes research. The researchers also want to conduct a
sensitivity analysis to see how the sample size is influenced by b. To
determine the required sample size the researchers use the following
call to SSDANOVA

library(SSDbain)

SSDANOVA(hyp1="mu1=mu2=mu3",hyp2="mu3>mu2>mu1",type=’equal’,

f1=(0,0,0),f2=c(550,560,580),var=c(2500,2500,2500),

BFthresh=3,eta=0.8,T=10000,seed=10)

The results are as follows:
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using N=73 and b=0.009

P(BF03>3|H0)=0.972

P(BF30>3|H3)=0.801

using N=62 and b=0.021

P(BF03>3|H0)=0.944

P(BF30>3|H3)=0.803

using N=55 and b=0.036

P(BF03>3|H0)=0.909

P(BF30>3|H3)=0.802

According to the results the researchers should execute their project
using between 55 and 73 persons per group. These are the numbers
that they can submit to the (medical) ethical review committee, and, to
which they should tailor their resources (time, effort and money). The
researchers can combine the results of SSD with Bayesian updating
(see the elaboration on this topic in Fu, Hoijtink, & Moerbeek, 2021) to
avoid using too few or too many persons. Bayesian updating can be ex-
ecuted as follows. They can use one-fourth of the sample size 73, that
is, collect 18 students per group first, and compute the Bayes factor
once the data have been collected. If the Bayes factor is larger than 3,
they stop the experiment; otherwise, they collect another 18 students
per group, compute the Bayes factor using 36 students per group, and
check if the Bayes factor is larger than 3, etc. In this manner, resources
can be used in an optimal way while reaching the required amount of
evidence.

Example 2: A team of psychologists is interested in whether male
college students’ hair color (1: black, 2: blond, or 3: brunette) in-
fluences their social extroversion. The students are given a measure
of social extroversion with a range from 0 (low) to 10 (high). Based
on a meta analysis of research projects addressing the same research
question, the means in the three groups are specified as 7.33, 6.13,
and 5.00, and the standard deviations are 2.330, 2.875, and 2.059, re-
spectively. The sampling variance which is denoted as "var" in the
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following code is the squared of standard deviation. The effect size
is f = σm

σ = 0.39. The researchers want to replicate the result emerg-
ing of the existing body of evidence, that is, is it H1: µ1 > µ2 > µ3 or
Hc: not H1. They want to obtain decisive evidence BFthresh = 10 with
a high probability η = .90. The researchers use the following call to
SSDANOVA:

library(SSDbain)

SSDANOVA(hyp1="mu1>mu2>mu3",hyp2="Hc",type=’unequal’,

f1=c(7.33,6.13,5.00),f2=c(5.00,7.33,6.13),

var=c(2.330^2,2.875^2,2.059^2),BFthresh=10,eta=0.9,

T=10000,seed=10)

The results are as follows:

using N=38 and b=0.017

P(BF1c>3|H1)=0.903

P(BFc1>3|Hc)=0.988

Therefore the researchers should obtain 38 males for each hair color.
Example 3: A team of economists would like to conduct a study to

compare the average salary of three age groups in the US. The typical
salary distribution in an age group population usually shows posi-
tive skewness. Three age groups that include people aged 25-34, 35-
44, and 45-54 years are considered, and the mean salaries for these
three groups are denoted as µ1, µ2 and µ3, respectively. Based on
prior research, experts’ opinion or a pilot study, they assume the effect
size is f = 0.25, the variances are 1.5, 0.75 and 0.75, the skewnesses
are 2, 2.5, and 1.75, and the kurtosis are 6, 10, and 6, respectively.
The researchers are only interested in a decision for or against one
of the two hypotheses involved. Therefore they use BFthresh = 1 and
use η = .90 to have a high probability that the observed Bayes factor
correctly identifies the best hypothesis. Two hypotheses are involved:
H1 : µ2 > µ3 > µ1 and H2 : µ3 > µ2 > µ1. The following call is used:

library(SSDbain)
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SSDANOVA_robust(hyp1="mu2>mu3>mu1",hyp2="mu3>mu2>mu1",

f1=0.25,f2=0.25,skews=c(2,2.5,1.75),kurts=c(6,10,6),

var=c(1.5,0.75,0.75),BFthresh=1,eta=0.9,T=10000,seed=10)

using N=50 and b=0.013

P(BF23>1|H2)=0.976

P(BF32>1|H3)=0.904

The results show that if the researchers survey 50 persons per group,
they have a probability that the Bayes factor is larger than 1 of 0.976
if H1 is true or get a probability that the Bayes factor is larger than 1
of 0.904 if H2 is true.

3.6 Conclusion

In this chapter we introduced sample size determination for the evalu-
ation of the classical null and alternative hypotheses and informative
hypotheses (and their complement) in the one way ANOVA context,
using the AAFBF as is implemented in the R package bain. Our SSD
approach as implemented in the functions SSDANOVA (which covers
regular ANOVA and Welch’s ANOVA) and SSDANOVA_robust (which
covers robust ANOVA), which are part of the R package SSDbain. Be-
sides the one-way ANOVA, SSDbain contains the function SSDttest
(Fu, Hoijtink, & Moerbeek, 2021). In the near future another func-
tion, SSDRegression, will be added to evaluate (informative) hypothe-
ses using the Bayes factor in the context of multiple regression models.
We believe that the R package SSDbain is a welcome addition to the ap-
plied researcher’s toolbox, and may help the researcher to gain an idea
about the required sample sizes while planning a research project.

The usage of informative hypothesis results in a reduction in the
sample size required, which further saves resources. However, given
that the sample size requirement for informative hypotheses is usually
lower, the researchers may choose to plan their studies with an infor-
mative hypothesis even when there is no strong evidence for the spec-
ified direction of the means, just so that they can justify their small
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sample size. This may further exacerbate the replicability crisis prob-
lems in the literature. Therefore, the user should be careful if the
informative hypothesis is introduced.

3.A Basic Algorithm used in Bayesian SSD
for One-Way ANOVAs

The basic algorithm used to determine the sample size uses the fol-
lowing steps:

1. Researchers have to specify the nine ingredients discussed in the
Section 3.3.

2. Simulate T data sets with sample size N = 10 per group from
each of the two populations defined by the specifications given
under 1. The data sets are denoted as D1

s ,D
2
s , · · · ,DT

s , and D1
v ,D

2
v ,

· · · ,DT
v , where s can be represented as 0 or i, and v can be repre-

sented as a, j or c.

3. Compute the Bayes factor (regular ANOVA, Welch’s ANOVA, or
robust ANOVA) for each simulated data set. If Hs is true the
Bayes factor is denoted by BFtsv , if Hv is true, the Bayes fac-
tor is denoted by BFtvs. Subsequently the probability P (BFsv >
BFthresh|Hs) denoted as ηs and the probability P (BFvs > BFthresh|Hv)
denoted as ηv can be computed.

4. If both ηs and ηv are larger than η, the algorithm stops and the
results are provided. Otherwise, the sample size N is increased
by 1 and the algorithm restarts in Step 2.

To execute a sensitivity analyses Steps 1 through 4 are not only ex-
ecuted using fraction b = J

K
1
N but also using b = 2J

K
1
N and b = 3J

K
1
N .

SSD may take a large amount of time. To calculate the sample size
efficiently, an improved algorithm based on a dichotomy algorithm is
introduced below.
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3.B An Improvement of the Basic Algorithm

In this appendix the refinement that makes the basic algorithm faster
is described. It is computer intensive to iterate Steps 2-4 many times
until the conditions in Step 4 are satisfied. The number of iterations
will be reduced and the calculation time will be shorter if Steps 2-4
from the basic algorithm are replaced by the steps presented below.
The basic principle of Steps 6-8 is to adjust the sample size gradu-
ally using a dichotomy algorithm until P (BFsv > BFthresh|Hs) ≥ η and
P (BFvs > BFthresh|Hv) ≥ η hold. Figure 3.2 portrays a flowchart to help
the reader have a visual representation of the sequence of steps:

2. Set the initial sample size N = 100.

3. Generate t = 1, · · · ,T data sets with sample size N per group from
each of the two populations, respectively. The data sets are de-
noted as D1

s ,D
2
s , · · · ,DT

s , and D1
v ,D

2
v , · · · ,DT

v .

4. Calculate the corresponding T BFs under the T data sets, re-
spectively, denoted as BFt

sv (t = 1,2, . . . ,T ), and BFt
vs. Then the

probability P (BFsv > BFthresh|Hs) denoted as ηs and the probabil-
ity P (BFvs > BFthresh|Hv) denoted as ηv can be computed.

5. If both ηs and ηv are larger than η, set N = N
2 . Return to Step 3

and repeat until one or both of ηs and ηv are smaller than η. At
this time, let Nmin = N , Nmax = 2 ∗N . If one or both of ηs and ηv
are smaller than η, set N = 2 ∗N . Return to Step 3 and repeat
until both ηs and ηv are larger than η. At this time, let Nmin = N

2 ,
Nmax = N .

6. Set N = Nmid = (Nmin +Nmax)/2, and perform Steps 3-4.

7. If both ηs and ηv are larger than η, set Nmax = Nmid; otherwise,
set Nmin = Nmid.

8. Repeat Step 6 until Nmid = Nmin+1. The final sample size is Nmid .
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Set N=100

 ηs>η&ηv>η

Set Nmid=-
Nmin+Nmax

2

Set N=-N2 Set N=2N

Set Nmin=N and Nmax=2N -N
2

Set Nmin=      and Nmax=N

    ηs>η&ηv>η         ηs>η&ηv>η

    ηs>η&ηv>η

end

Set Nmax=Nmid Set Nmin=Nmid 

       Nmid=Nmin+1

Start

Yes No

Yes No

Yes No

No

Yes

No Yes

Figure 3.2: An improvement of the basic algorithm: sample size
determination for the Bayesian one-way ANOVA. Note that

ηs = P (BFsv > BFthresh|Hs), ηv = P (BFvs > BFthresh|Hv). 73
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3.C How to Determine The Means Based on
An Effect Size

In the functions SSDANOVA and SSDANOVA_robust of the R package
SSDbain, if the researchers specify a Cohen’s effect size f , for a regu-
lar ANOVA it is assumed that the within-group variance σ2 = 1, and
for Welch’s ANOVA and robust ANOVA, the within-group variance σ2

is set equal to the average of the within-groups variances the user en-
tered for each of the groups. Then the means are determined automat-
ically based on the given effect size f and the within-group variance.

In the following we introduce how to determine the means for K
groups if H0, Ha, Hi , or Hc is true.

For the null hypothesis H0, the effect size is f = 0, and the default
population mean for each group is zero.

For the unconstrained hypothesis Ha, the default population means
are in the order µ1 > µ2 > · · · > µK . If, for example, K = 4, we assume
(µ1,µ2,µ3,µ4)=(3d,2d,d,0). Based on the formula f = σµ/σ =√

1
4
∑4

1(µi − µ̄)2/σ =
√

1
4 ∗ 5d2/σ , the value of d can be obtained, and

thus the population means can be computed.
For the order hypothesis Hi : µ1∗ > µ2∗ > ... > µK∗ , the default pop-

ulation means are in the order µ1∗ > µ2∗ > ... > µK∗ . If, for example,
Hi : µ1 > µ3 > µ2 > µ4, we assume (µ1,µ2,µ3,µ4) = (3d,d,2d,0). Based

on the formula f = σµ/σ =
√

1
4
∑4

1(µi − µ̄)2/σ =
√

1
4 ∗ 5d2/σ , the value of

d can be computed and thus the population means can be computed.
If the hypothesis is Hi , the complemented hypotheses can be di-

vided into
(K

2
)

categories based on the adjacent pairs of violation of
the means, where

(K
2
)

is a combinatorial number. For ease of under-
standing, two simple examples for K = 3 and K = 4 are given:

Example 1: H1: µ1 > µ2 > µ3 vs Hc

(1 pair of violation): Hc1: µ2 > µ1 > µ3, Hc2 : µ1 > µ3 > µ2;
(2 pairs of violations): Hc3: µ3 > µ1 > µ2, Hc4: µ2 > µ3 > µ1;
(3 pairs of violations): Hc5: µ3 > µ2 > µ1.
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The Bayes factor BFc1 for Hc vs H1 becomes larger with the increase
of the number of pairs of violation for the complemented population
from H1. Furthermore, the Bayes factor BFc1 under population Hc3 is
smaller than that under population Hc4. The median number hypoth-
esis Hc3 of Hci (i = 1, · · · ,5) is chosen as the representative hypothesis
to simulate data under Hc, that is, the means of the complement hy-
pothesis are in the order µ3 > µ1 > µ2. For this hypothesis the means
can be computed as was done earlier for Hi .

Example 2: H1:µ1 > µ2 > µ3 > µ4 vs Hc
(1 pair of violation): Hc1: µ2 > µ1 > µ3 > µ4, Hc2: µ1 > µ3 > µ2 > µ4,

Hc3: µ1 > µ2 > µ4 > µ3;
(2 pairs of violations): Hc4: µ2 > µ3 > µ1 > µ4, Hc5: µ2 > µ1 > µ4 > µ3,

Hc6: µ1 > µ3 > µ4 > µ2, Hc7: µ3 > µ1 > µ2 > µ4; Hc8: µ1 > µ4 > µ2 > µ3;
(3 pairs of violations): Hc9: µ3 > µ2 > µ1 > µ4, Hc10: µ2 > µ3 > µ4 >

µ1, Hc11: µ2 > µ4 > µ1 > µ3, Hc12: µ3 > µ1 > µ4 > µ2, Hc13: µ1 > µ4 > µ3 >
µ2, Hc14: µ4 > µ1 > µ2 > µ3;

(4 pairs of violations): Hc15: µ3 > µ2 > µ4 > µ1, Hc16: µ2 > µ4 > µ3 >
µ1, Hc17: µ4 > µ2 > µ1 > µ3, Hc18: µ3 > µ4 > µ1 > µ2, Hc19: µ4 > µ1 > µ3 >
µ2;

(5 pairs of violations): Hc20: µ3 > µ4 > µ2 > µ1, Hc21: µ4 > µ2 > µ3 >
µ1, Hc22: µ4 > µ3 > µ1 > µ2;

(6 pairs of violations): Hc23: µ4 > µ3 > µ2 > µ1
As described in the previous example, the Bayes factor BFc1 for Hc

vs H1 becomes larger with the increase of pairs of violation for the
complemented population from H1. Furthermore, the Bayes factors
BFc1 under population Hci (i = 9, · · · ,14) are sorted in ascending order.
The median number hypothesis Hc12 of Hci (i = 1, · · · ,23) is chosen as
the representative hypothesis to simulate data under Hc, that is, the
means of the complement hypothesis are in the order µ3 > µ1 > µ4 >
µ2. For this hypothesis the means can be computed as was done earlier
for Hi .
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Chapter 4

Sample Size Determination for
Bayesian Testing of Informative
Hypothesis in Linear
Regression Models 1

It is a tradition that goes back to Jacob Cohen to calculate the sam-
ple size before collecting data. The most commonly asked question
is as follows: "How many subjects do we need to obtain a signifi-
cant result if we use the p-value to evaluate the hypothesis if an ef-
fect size exists?" In the Bayesian framework, we may want to know
how many subjects are needed to get convincing evidence if we use
the Bayes factor to evaluate the hypothesis. This paper proposes a
solution to the above question by reaching two goals: first, the size
of the Bayes factor reaches a given threshold, and second the proba-
bility that the Bayes factor exceeds the given threshold reaches a re-
quired value. Researchers can express their expectations through the
order or the sign hypothesis of the parameters in a linear regression

1The author of this Chapter is Qianrao Fu. All analyses presented in the chap-
ter can be reproduced using the research archive that can be found on github at
https://github.com/Qianrao-Fu/research-archive.
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4. Sample Size Determination for Bayesian Testing of Informative

hypothesis in Linear Regression Models

model. For example, researchers may expect the regression coefficient
to be β1 > β2 > β3, which is an order constrained hypothesis; or the re-
searchers may expect a regression coefficient β1 > 0, which is a sign hy-
pothesis. The greatest advantage of using a specific hypothesis is that
the sample size required is reduced compared to an unconstrained hy-
pothesis to achieve the same probability that the Bayes factor exceeds
some threshold. This article provides sample size tables for the null,
order, sign, complement, and unconstrained hypotheses. To enhance
the applicability, an R package is developed via a Monte Carlo simula-
tion, which can facilitate psychologists while planning the sample size
even if they do not have any background in statistical programming.

4.1 Introduction

Sample size determination is a crucial step in the design of a study. If
the sample size is insufficient, then the study will not be able to draw
valid conclusions. Conversely, if the sample size is much larger than
required, the study will become expensive, time-consuming and ethi-
cally unacceptable. When the required sample size cannot be achieved
to demonstrate convincing results, the researchers may consider not
going ahead with this study to save money and effort. In most uni-
versities, sample size determination and statistical power analysis are
increasingly becoming a requirement for most research proposals, ap-
plications for ethical clearance and journal articles. Based on Cohen’s
research (Cohen, 1988, 1992), software programs for sample size cal-
culation and power analysis, such as G*Power (Faul et al., 2007; Mayr
et al., 2007; Faul et al., 2009), nQuery Advisor (J. Elashoff, 2007) and
PASS (Hintze, 2011) have been developed. Through these software
programs, the researcher can obtain a sample size plan easily.

The multiple linear model is one of the most often used models
in the social and behavioral sciences. Multiple linear regression is
widely used to evaluate how a response variable (Y ) is related to a set
of predictors (X1,X2, · · · ,XK ). Suppose a group of researchers wants
to investigate the relationship between the response variable Income
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4.1. Introduction

and two predictor variables Intelligence (IQ) and Socio-Economic Sta-
tus (SES) using multiple linear regression. The regression coefficient
corresponding to IQ is denoted as β1, and the regression coefficient
corresponding to SES is denoted as β2. The hypothesis of interest for
the study is that the predictor of IQ has a stronger effect than SES on
the response variable Income. This hypothesis can be expressed using
the notation H1: β1 > β2. To demonstrate this order relationship, the
researchers want to detect a coefficient of determination, for instance,
R2 = 0.13, where R2 is the proportion of the variance in the dependent
variable that is explained by the independent variable(s). Sample-
size tables in the framework of null-hypothesis significance testing
(NHST) based on the F-test show that in the case of two predictors,
R2 = 0.13, and a significance level of α = 0.05, 67 subjects are neces-
sary to obtain a power of 0.80 if the null hypothesis H0: β1 = β2 = 0
is compared with the unconstrained hypothesis Ha: β1, β2. However,
the expected ordering of the means (β1 > β2) is completely ignored in
NHST.

NHST has been harshly criticized in numerous articles in recent
years although it is the most commonly used method for statistical
hypothesis testing. Among them, there are three crucial points:

1) The p-value derived from NHST is a measure of evidence against
the null hypothesis H0 (Hurlbert & Lombardi, 2009). What is more,
it exaggerates the evidence against the null hypothesis H0 (Berger
& Sellke, 1987; Berger, 1986), that is, the p-value makes it rela-
tively easy to obtain statistically significant findings. For example,
if p-values of 0.05, 0.01, and 0.001 are considered, the posterior
probabilities of the null, P (H0|x), for sample size N = 50 are 0.52,
0.22, and 0.034, respectively, which indicate that these discrepan-
cies between p-value and posterior probability are pronounced.

2) A significance level α of 0.05 typically reduces NHST to a binary
decision rule, that is, the null hypothesis is rejected if the p-value is
smaller than 0.05, and not rejected it if it is above 0.05 (Harlow et
al., 1997/2016; Nickerson, 2000; Wagenmakers, 2007). This leads
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hypothesis in Linear Regression Models

to phenomena such as publication bias (Ioannidis, 2005; Simmons
et al., 2011; Van Assen et al., 2014), and questionable research prac-
tices (Fanelli, 2009; Masicampo & Lalande, 2012; Wicherts et al.,
2016), which both contribute to the replication crisis (Open Sci-
ence Collaboration, 2015);

3) In practical applications, the null hypothesis is never exactly true.
Therefore it is always rejected as the number of observations be-
comes large (Raftery, 1995; Cohen, 1994; Royall, 1997).

An alternative that has gained notable attention over the past years
is Bayesian hypothesis testing using the Bayes factor (Lee & Wagen-
makers, 2014; Van de Schoot et al., 2017; Vandekerckhove et al., 2018;
Wagenmakers et al., 2016). In contrast to NHST, the Bayes factor has
the following advantages:

1) The Bayes factor not only provides evidence in favor of the alter-
native hypothesis but, in contrast to the p-value, also provides evi-
dence in favor of the null hypotheses.

2) As elaborated in Hoijtink, Mulder, et al. (2019), the Bayes factor is a
continuous value that quantifies the degree of the evidence in favor
of one hypothesis compared to another hypothesis instead of mak-
ing a hard "accept/reject" decision about the null hypothesis. This
helps to reduce the problem of replication crisis. This is because
the evidence of supporting the null hypothesis can be obtained in
the Bayesian framework. This makes it more likely to be published
in scientific journals even when there are "non-significant" results
as encountered in NHST.

3) The Bayes factor will approach 0 or∞ when the sample size is very
large (i.e., the Bayes factor for the null hypothesis H0 goes to in-
finity if H0 is true, and goes to 0 if the alternative hypothesis H1
is true, as the sample size goes to infinity), that is, the property of
consistency for the Bayes factor as presented in Ly, Verhagen, and
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Wagenmakers (2016). This property guarantees that the Bayes fac-
tor will always support the true hypothesis when the sample size is
large enough.

4) The Bayes factor can compare the null, unconstrained, comple-
ment, and informative hypotheses, where the informative hypoth-
esis (Hoijtink, 2012) can express the researcher’s expectations with
regard to the sign or order of the regression coefficients of the pre-
dictors. For example, revisiting the example introduced earlier, the
researcher may be interested in that IQ and SES both have a posi-
tive effect on Income, that is, H1: β1 > 0, β2 > 0.

As the Bayes factor is used more often (Van de Schoot et al., 2017;
Vandekerckhove et al., 2018; Wagenmakers et al., 2016), the Bayes fac-
tor calculation tools emerge. Currently, three R packages can be used
to compute the Bayes factor: for the evaluation of a null hypothesis
versus the alternative hypothesis BayesFactor 2 (Morey et al., 2018);
and, additionally, for the evaluation of informative hypothesis bain 3

(Gu et al., 2021) and BFpack 4 (Mulder et al., 2021). The first two
packages are also available in JASP 5 (Love et al., 2019), which is an
easy-to-use statistical software with an intuitive interface.

In line with the popularity of Bayesian hypothesis testing, more
attention to sample size determination should be paid in this frame-
work. The purpose of this chapter combined with Fu, Hoijtink, and
Moerbeek (2021), and Fu, Moerbeek, and Hoijtink (2021) is to in-
troduce a new R package SSDbain to help researchers who are not
mathematicians and/or statisticians to obtain the minimum sample
size required when the Bayes factor is used to evaluate informative
hypotheses. The sample size is determined such that the probabil-
ity that the Bayes factor is larger than a threshold denoted by BFthresh
is η under the competing hypotheses considered, where BFthresh is a

2https://richarddmorey.github.io/BayesFactor/
3https://informative-hypotheses.sites.uu.nl/software/bain/
4https://github.com/jomulder/BFpack
5https://jasp-stats.org/
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hypothesis in Linear Regression Models

value that constitutes sufficient evidence for the researchers, and η
is the probability to correctly find sufficient support for the true hy-
pothesis. Throughout this chapter, sample size determination (SSD)
for the comparison of null, informative, and unconstrained hypothe-
ses under a multiple linear regression in the Bayesian framework as
implemented in the R package bain is performed. This work builds on
sample size calculations for the two-sample t-test discussed in Fu, Hoi-
jtink, and Moerbeek (2021), one-way ANOVA discussed in Fu, Moer-
beek, and Hoijtink (2021), and Bayes factor design analysis discussed
in Schönbrodt and Wagenmakers (2018); Stefan et al. (2019). Several
tables based on R2 = 0.13, which corresponds to Cohen’s medium ef-
fect size f 2 = 0.15, are presented as an example to assist researchers in
determining the minimum sample size required.

The outline of this chapter is as follows. First, the multiple linear
regression models that are used in the article are introduced, the (in-
formative) hypotheses that are evaluated are described, and the Bayes
factor as implemented in the R package bain is further elaborated on.
Subsequently, sample size determination is introduced, followed by
the introduction of the function SSDRegression in the R package SSD-
bain, features of SSD are highlighted, and examples are provided and
discussed. The chapter ends with a short conclusion.

4.2 Multiple Linear Regression and
(Informative) Hypotheses

In this chapter, K regression coefficients, β1,β2, · · · ,βK are considered,
where K is an integer that is greater than or equal to 1. Let us consider
the following linear regression model where a dependent variable Y
is regressed on K predictor variables X1,X2, · · · ,XK , say,

yi = β0 +
K∑
k=1

βkxi,k + ϵi ,ϵi ∼N (0,σ2), (4.1)
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where yi for i = 1, · · · ,N is the i-th observation of the dependent vari-
able Y , N denotes the size of the sample, xi,k denotes the i-th obser-
vation of the k-th predictor variable Xk, where k = 1,2, · · · ,K , β0 is the
intercept of the regression model, βk is the regression coefficient of
the k-th predictor, and ϵi are independently and normally distributed
errors with variance σ2.

In this chapter, the sample size is determined for the comparison of
null, informative, complement, and unconstrained hypotheses. These
hypotheses concern the regression coefficients from the multiple lin-
ear regression model in Equation 4.1. The null and unconstrained
hypotheses are already well known in NHST. The informative hypoth-
esis is introduced using the following example: a group of researchers
wants to explore the relationship between the response variable IQ
and three predictor variables, namely social skills, interest in artistic
activities, and use of complicated language patterns. The multiple lin-
ear regression model is used to fit this relationship. The correspond-
ing regression coefficients are denoted by β1, β2, and β3, respectively.
The following pairs of hypotheses may be compared: 1) a group of re-
searchers is interested in whether at least one predictor has an effect
on the dependent variable IQ, that is, H0: β1 = β2 = β3 = 0 vs Ha: at
least one predictor has an effect on IQ; 2) the same researchers may
also have evidence that the first three predictor variables are expected
to be positively associated with IQ, that is, H0: β1 = β2 = β3 = 0 vs
H1: β1 > 0, β2 > 0, β3 > 0; 3) in confirmatory studies, the interest is
typically in testing specific hypotheses with order constraints on the
relative importance of the predictors based on scientific expectations
or psychological theories (Hoijtink, 2012, pp. 5–20). The researchers
may expect that social skills is the strongest predictor, followed by
interest in artistic activities, and then use of complicated language
patterns. They may formulate the hypotheses as H0: β1 = β2 = β3 vs
H2: β1 > β2 > β3; 4) the researchers may be interested in supporting
H1 or precluding H1, that is, H1: β1 > 0, β2 > 0, β3 > 0 vs H1c: not
H1, where the subscript c refers to the complement of H1; 5) the re-
searchers may want to know if H2 is preferred over other hypotheses,
that is, H2: β1 > β2 > β3 vs H2c: not H2, where the subscript c refers to
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the complement of H2. In this chapter, the generic situations shown
below are studied:

Situation 1:
H0: β1 = β2 = · · · = βK = 0 vs Ha: at least one predictor has an effect

on the dependent variable,
Situation 2:
H0: β1 = β2 = · · · = βK = 0 vs H1: β1 > 0, β2 > 0, · · · , βK > 0,
where some or all the regression coefficients may be smaller than

zero. That is, both "<" and ">" can exist in a hypothesis.
Situation 3:
H0: β1 = β2 = · · · = βK vs H2: β1∗ > β2∗ > · · · > βK∗ ,
where 1∗, 2∗, · · · , K∗ are a re-ordering of the numbers 1, 2, · · · , K ,
Situation 4:
H1: β1 > 0, β2 > 0, · · · , βK > 0 vs H1c: not H1.
It should be noted that in this situation only ">" or "<" is allowed.

The complexity of the complement hypothesis if both ">" and "<" exist
in one hypothesis prevent me from discussing it in this chapter.

Situation 5:
H2: β1∗ > β2∗ > · · · > βK∗ vs H2c: not H2.
The standardized regression coefficients are used in Situation 3

and Situation 5 to ensure that the regression coefficients are compa-
rable. The reason is that the regression coefficients β1, · · · , βK may all
be in different units of measurement and direct comparison is illogi-
cal. The next section elaborates how the Bayes factor implemented in
the R package bain can be used to evaluate these pairs of hypotheses.

4.3 Bayes Factor

To evaluate the competing hypotheses introduced in the previous sec-
tion, the Bayes factor will be used to quantify the relative evidence
provided by the data. The Bayes factor was proposed in pioneer-
ing work by Jeffreys (1961), and it was further discussed in Kass and
Raftery (1995); Edwards, Lindman, and Savage (1963); Myung and
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Pitt (1997). The Bayes factor for informative hypotheses was elab-
orated in the tutorial by Hoijtink, Mulder, et al. (2019), which con-
tains all the references to the statistical background of these Bayes
factors. The Bayes factor can be explained as follows, in the case of
H0: β1 = β2 = β3 = β4 = 0 versus H1: β1 > β2 > β3 > β4, a Bayes factor
BF01 = 19, for instance, means that there is 19 times more support for
the model specifying the equality on the regression coefficients than
for the model specifying order constraints. The Bayes factor for the
null hypotheses H0, signed hypothesis H1, or order hypothesis H2 ver-
sus the unconstrained hypothesis Ha (the hypothesis without restric-
tions on the regression coefficients) is defined by the marginal likeli-
hood ratio (Jeffreys, 1961; Kass & Raftery, 1995)

BFza =
mz(Y ,X)
ma(Y ,X)

=

!
f (Y ,X | β,σ2)πz(β,σ2)dβdσ2!
f (Y ,X | β,σ2)πa(β,σ2)dβdσ2

, (4.2)

where z=0, 1, 2, c, where πz(β,σ2) = πz(β) 1
σ2 and πa(β,σ2) = πa(β) 1

σ2 ,
where πz(β) and πa(β) denote the prior distribution under Hz and Ha,
respectively, and f (Y ,X | β,σ2) is the density of the data based on the
model in Equation 4.1.

According to Klugkist et al. (2005), Equation 4.2 can be simplified
to

BFza =
fz
cz
, (4.3)

where fz is the fit of hypothesis Hz and cz is its complexity.
The complexity cz can be expressed as

cz =
∫
β∈Hz

πa(β)dβ. (4.4)

It is the proportion of the prior distribution in agreement with Hz
if z=1, 2, and is reduced to the density πa(β = 0) if z=0, where β =
(β1 − β2,β2 − β3, · · · ,βk−1 − βk) in the case of β1 = β2 = · · · = βK , and
β = (β1,β2, · · · ,βK ) in the case of β1 = 0 & β2 = 0 · · · & βK = 0. The com-
plexity stands for how specific the hypothesis Hz is if z =1, 2. The more
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specific the inequality constrained hypothesis, the lower the complex-
ity, but the complexity for the null hypothesis H0 and the inequality
constrained hypotheses H1 or H2 cannot be compared because the first
is a density and the latter a probability.

The fit fz can be expressed as

fz =
∫
β∈Hz

πa(β | X)dβ. (4.5)

It is the proportion of the posterior distribution in agreement with Hz
if z=1, 2, and is reduced to the density πa(β = 0 | X) if z=0. The fit
stands for how much the data supports Hz relative to Ha if z =1, 2.
The more the support from the data, the larger the fit.

Based on BFza, the Bayes factor BFzc for z = 1, 2 that expresses the
support in the data for Hz relative to its complement hypothesis Hc,
can be derived as follows:

BFzc =
BFza

BFca
=
fz
cz
/
1− fz
1− cz

, (4.6)

where 1 − fz denotes the fit of hypothesis Hc, and 1 − cz denotes the
complexity of hypothesis Hc. The Bayes factor BF02, which expresses
the support in the data for H0 against the competing hypothesis H2, is
represented by:

BF02 =
BF0a

BF2a
=
f0

c0
/
f2

c2
, (4.7)

and the Bayes factor BF01 that expresses the support in the data for
H0 against the competing hypothesis H1 is represented by:

BF01 =
BF0a

BF1a
=
f0

c0
/
f1

c1
. (4.8)

In this chapter, the calculation of the Bayes factor as implemented in
the R package bain (Gu et al., 2018; Hoijtink, Gu, & Mulder, 2019) is
used. In bain, the posterior distribution of the regression coefficients is
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approximated by a normal distribution based on large sample theory
(Gelman et al., 2013, p. 101):

πa(β | X) ≈N (β̂, Σ̂β), (4.9)

where β̂ is the maximum likelihood estimation (MLE) of β and Σ̂β is
its covariance matrix if Situations 1, 2, and 4 are considered, and β̂ is
the MLE of the standardized parameters and their covariance matrix
if Situations 3 and 5 are considered. In bain, the adjusted fractional
normal prior distribution (Gu et al., 2018) is used:

πa(β) = N (0, Σ̂β/b). (4.10)

The variance of this prior for each regression coefficient is calculated
using a fraction b of the information in the data (De Santis & Spez-
zaferri, 2001; Mulder, 2014; O’Hagan, 1995). The mean of the prior
for each regression coefficient is chosen as zero, which is located on
the boundary of the constrained region of the competing hypotheses
to make sure the Bayes factor is consistent when equality constrained
hypotheses are evaluated (Mulder, 2014).

According to Berger and Pericchi (1996), the default value b = J/N
is used to specify the variance of the prior distribution, where J is the
minimal training sample size (a small part of the observed data). In
bain, J is replaced by the number of independent constraints. This
can be illustrated using an example. If H0: β1 = β2 = β3 versus H1:
β1 > β2 > β3, the number of independent constraints is J = 2, that
is, there are two contrasts β1 − β2 and β2 − β3 to be evaluated in the
hypotheses.

To explore the influence of the variance of the prior distribution
on the resulting of the Bayes factor if hypothesis H0 is included in
the competing hypotheses, a sensitivity analysis should be conducted.
A sensitivity analysis can help fully understand the Bayesian results
combined with the prior distribution and properly interpret the im-
pact of the prior. In the following sections, different choices of b value
(b = J/N , b = 2J/N , and b = 3J/N ) are used. If only the inequality
constraints are included in the competing hypotheses, the prior has
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no influence on the value of Bayes factor; see Mulder (2014) for an ex-
planation. Therefore, the sensitivity analysis is relevant for Situations
1-3, but it does not affect the value of the Bayes factor when different
b′s are used for Situations 4 and 5.

4.4 The Criterion for Sample Size
Determination

In the traditional a priori power analysis, the purpose of sample size
determination is to control the Type I error rate and the Type II error
rate. The sample size can be calculated if the significance level α, the
desired statistical power 1−β, and the to-be-detected population effect
size f 2 in a multiple linear regression are given (Cohen, 1988, 1992).
In Bayesian hypothesis testing, instead of controlling the Type I error
rate and Type II error rate, the sample size is calculated to guarantee
that the Bayes factor exceeds a user specified threshold with a specific
probability for the true hypothesis. The following paragraphs explain
how the sample size is determined when the Bayes factor is used to
evaluate (informative) hypotheses under a multiple linear regression
model.

The criterion that is proposed has also been used for the two-sample
t-test (Fu, Hoijtink, & Moerbeek, 2021) and one-way ANOVA (Fu, Mo-
erbeek, & Hoijtink, 2021). To help the readers understand how to
determine the sample size, Figure 4.1 is used. The process of deter-
mining the sample size can be divided into the following five steps:

1. Sample size determination always starts with the specification of
two competing hypotheses. The competing hypotheses used in
Figure 4.1 are H0: β1 = β2 = β3 = 0 and H1: β1 > 0 & β2 > 0 &
β3 > 0.

2. One needs to specify plausible values of the parameters in order
to perform a sample size determination. For each population
whether H0 is true or H1 is true, the parameter values are un-
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known. The next section elaborates how these parameter values
can be chosen. For now, in Figure 4.1, when H0 is true, β1 = β2 =
β3 = 0 is used, and when H1 is true, β1 = β2 = β3 = 0.208 is used,
which corresponds to R2 = 0.13.

3. From each population, data sets with a certain sample size are
repeatedly sampled. How the sample size is chosen is elaborated
in the next section.

4. For the population under H0, the Bayes factor BF01 for each data
set is computed and for the population under H1, the Bayes fac-
tor BF10 for each data set is also computed. In Figure 4.1, in
panel (a) on the left, the distribution of BF01 is shown, and in
panel (b) on the right, the distribution of BF10 is shown.

5. The required sample size should be large enough such that the
Bayes factor is larger than a user selected threshold BFthresh with
a specific probability η, where BFthresh = 3 is marked with a
dashed line, and η = 0.8 is marked with the shaded area in Figure
4.1. That is, P (BF01 > BFthresh|H0) ≥ η and P (BF10 > BFthresh|H1) ≥
η have to be satisfied. As shown in Figure 4.1, to satisfy the
condition of BF01 under H0: β1 = β2 = β3 = 0 that P (BF01 >
3|H0) ≥ 0.80, the sample size required is N = 23, whereas the
sample size should be more than 100 to satisfy the condition
that P (BF10 > 3|H1) ≥ 0.80 when H1: β1 > 0 & β2 > 0 & β3 > 0
with R2 = 0.13. To satisfy both conditions, at least a sample of
N = 100 should be collected.

Researchers require the relative support in the data under one hy-
pothesis compared to the other hypothesis, or vice versa, to be at least
BFthresh. The η is used to control the error rates when either of the
competing hypotheses is true. If η = 0.8, this means that the error
rate is not more than 1− η = 0.2 if either of the competing hypotheses
is true. The remaining issue is that there is still a lack of a standard
to choose the sizes of BFthresh and η. What constitutes sufficient ev-
idence, and what is the appropriate probability to convincingly sup-
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Figure 4.1: The sampling distribution of BF01 under H0 and BF10
under H1. The vertical dashed line represents BFthresh = 3, and the
shaded area denotes the probability that the Bayes factor exceeds 3 if
the target η = 0.8. The N in the label is the sample size needed to
achieve the requirements.
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port the true hypothesis? The selection of these values depends on the
area of research and whether primary or secondary outcome measures
are investigated. The researchers can consult the professionals in the
field of behavior and social sciences, for example, to fill in a question-
naire, and ask them about what constitutes sufficient evidence for var-
ious scenarios in their respective fields. The responses from the pro-
fessionals can be modeled with the wisdom-of-the-crowd paradigm
(Surowiecki, 2004; Lee, Steyvers, De Young, & Miller, 2012), which
states that an aggregate of the judgment and estimates of many people
is more accurate than the judgment of one person. Based on the risk
level of the research, the appropriate value of the BFthresh also varies.
For example, to verify the effectiveness of vaccines against the Coron-
avirus disease 2019, a large value of the BFthresh is recommended, such
as 10. Contrary to that, a small value, such as 3, is preferred for the
investigation of the height of elementary school students in different
regions. The η is introduced to limit the error rates. For example,
when η is equal to 0.8, the Type I error and Type II error rates would
be no more than 20%. If the consequences of missing an effect may
be significant, for example in a toxicity test, one may need a relatively
high η, for example, 0.90. In a survey, one would be interested only in
large effects, and errors in detecting effects may not have such serious
consequences. In this case, η = 0.80 may be sufficient.

4.5 The Basic Algorithm Used for Sample
Size Determination

In the Bayesian framework, most of the research questions and data
issues are sufficiently complicated such that the problems cannot be
solved analytically. In this chapter, when the researchers use the Bayes
factor to evaluate hypotheses, Monte Carlo methods will be used to
determine the sample size. Figure 4.2 displays the process of the
simulation-based algorithm. The corresponding steps in Figure 4.2
are discussed below.
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1. Before proceeding with the sample size determination, the fol-
lowing ingredients need to be specified:

(1) The competing hypotheses are specified using the regres-
sion coefficients. The options for the competing hypotheses
are the null, complement, unconstrained, order and sign hy-
potheses.

(2) The regression coefficients for each population in which the
hypothesis is true can be calculated if the fixed coefficient of
determination R2 (R2 > 0) and the ratio among the regres-
sion coefficients β1,β2, · · · ,βK are given. Appendix 4.B shows
how to achieve the regression coefficients if these two fac-
tors are known. If R2 = 0, the regression coefficients for the
population are all equal to 0.

(3) The correlation matrix among the predictor variables

Σ =


1 ρ12 · · · ρ1K
ρ21 1 · · · ρ2K
...

...
. . .

...
ρK1 · · · ρK(K−1) 1

.
This ingredient is used to generate correlated data. This is
because in practice, correlated predictor variables are the
rule rather than the exception.

(4) The desired threshold for the Bayes factor BFthresh.

(5) The probability η that the Bayes factor is larger than BFthresh
under each of the two competing hypotheses.

2. Randomly draw T data sets with a sample of size N = 10 if
the hypothesis Hs is true and if the competing hypothesis Hv

is true. The data sets are denoted as (x(t)
i , y

(t)
si ) = (x(t)

i1 , · · · ,x
(t)
iK ,β0 +∑K

k=1β
s
kxik + ϵi), and (x(t)

i , y
(t)
vi ) = (x(t)

i1 , · · · ,x
(t)
iK ,β0 +

∑K
k=1β

v
kxik + ϵi),

respectively, where s=0, 1, 2, v=1, 2, a, 1c, or 2c, and βs
k is the

regression coefficient when hypothesis Hs is true, and βv
k is the

regression coefficients when the competing hypothesis is true,
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where t = 1, · · · ,T . As is elaborated in Appendix 4.B, the inter-
cept β0 is set to zero, x(t)

i ∼N (0,Σ) and the regression coefficients

are chosen such that y(t)
si ∼ N (0,1), and y

(t)
vi ∼ N (0,1), that is, in

the population the regression coefficients are standardized.

3. Compute the values of the Bayes factor for each simulated data
set. If Hs is true the Bayes factor is denoted by BF(t)

sv (t = 1,2, · · · ,T )
and if Hv is true, the Bayes factor is denoted by BF(t)

vs .

4. Calculate the proportion of the Bayes factor that is larger than
BFthresh, that is, P (BF(t)

sv > BFthresh|Hs) denoted by ps and the prob-
ability P (BF(t)

vs > BFthresh|Hv) denoted by pv .

5. If both ps and pv are larger than η, the algorithm stops and the
sample sizes computed are provided. Otherwise, the sample size
N is progressively increased by one, return to Step 2, and repeat
Steps 3-5 until both ps and pv are larger than η.

The computing effort of the basic algorithm can be extremely high
when the required sample size is large, as the number of the iterations
is N−10+1. In addition, to execute the sensitivity analyses, the process
from Step 1 to Step 5 has to be performed with three different fraction
values, namely b = J

N , b = 2J
N and b = 3J

N (see Section 4.3). Therefore,
the computation effort is tripled. To reduce the computation effort, an
improved algorithm based on a dichotomy algorithm is introduced in
Appendix 4.A.

4.6 SSDRegression: A Function for Sample
Size Determination for Multiple Linear
Regression

Sample size determination using the Bayes factor for evaluating null,
informative, complement, and unconstrained hypotheses within the
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multiple linear regression models was implemented in a function
SSDRegression in the R package SSDbain to facilitate general utiliza-
tion of the methodology. It has to be emphasized that the user can
refer to the help file for further elaboration of the function, and the
function has been tested in the test-that file. The code is available on
GitHub 6. This package already includes three functions called "SS-
Dttest", "SSDANOVA", "SSDANOVA_robust", which have been intro-
duced in Fu, Hoijtink, and Moerbeek (2021) and Fu, Moerbeek, and
Hoijtink (2021). As a part of the R package SSDbain, the function
"SSDRegression" is now introduced. This section describes the spe-
cific input and the return results for the function "SSDRegression".
After installing the R package SSDbain (which automatically installs
bain if not already installed on your computer), the following call is
used to calculate the sample size required.

library(SSDbain)

Res<-SSDRegression(Hyp1="beta1=beta2=beta3=0",Hyp2="Ha",

k=3,rho=matrix(c(1,0.2,0.2,0.2,1,0.2,0.2,0.2,1),nrow=3),

R_square1=0,R_square2=0.13,T_sim=10000,BFthresh=3,eta=0.8,

seed=10,standardize=FALSE,ratio=c(1,1,1))

The following arguments appear in this call:

1. Hyp1 and Hyp2, strings that specify one pair of hypotheses of
interest. For example, if H0: β1 = β2 = β3 = 0 versus H1: β1 > 0 &
β2 > 0 & β3 > 0, Hyp1=’beta1=beta2=beta3=0’, Hyp2=’beta1>0
& beta2>0 & beta3>0’. Attention should be paid to the fol-
lowing situations. If the unconstrained hypothesis is involved,
Hyp2=’Ha’; if the complement hypothesis is engaged, Hyp2=’Hc’.

2. K, a positive integer that specifies the number of predictors. For
example, if the model is yi = β1xi1 + β2xi2 + β3xi3 + ϵi , K=3.

3. rho, a matrix that specifies the correlation between the predic-
tors, which is a symmetric matrix with ones on the diagonal and

6https://github.com/Qianrao-Fu/SSDbain
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values of ρ elsewhere. Here ρ is the correlation between two dif-
ferent predictors.

4. R_square1 and R_square2, parameters used to specify the co-
efficients of determination R2

1 and R2
2 under Hyp1 and Hyp2, re-

spectively. Typically, the expected R_square1 and R_square2 are
identified from 1) a pilot study; 2) a similar study; 3) a field de-
fined meaningful effect; or 4) an educated guess based on infor-
mal observations and knowledge of the field.

5. BFthresh, a numeric value not less than 1 that specifies the re-
quired size of the Bayes factor for the true hypothesis. For exam-
ple, if H0 is compared with H2, BF02 ≥ BFthresh or BF20 ≥ BFthresh
should be reached. The default setting is BFthresh=3. The next
section elaborates why this is the default value.

6. eta, a numeric value that specifies the probability that the Bayes
factor is larger than BFthresh if either of the competing hypothe-
ses is true. For example if H0 versus H2 and H2 is true, P (BF20 >
BFthresh|H2) ≥ η. The default setting is eta=0.80. The next sec-
tion elaborates why this is the default value.

7. T_sim, a positive integer that specifies the number of data sets
sampled from the populations corresponding to the two hypothe-
ses of interest. A larger number of samples returns a more accu-
rate sample size estimate but takes a longer time to run. Users
are advised to start with a smaller number of samples (e.g.,
T_sim=1000) to obtain a rough estimate of the required sample
size before confirming it with the default setting T_sim=10000.

8. seed, a positive integer that specifies the seed of R’s random
number generator. The sample size required may be different
with different seed values, but the number of simulated data sets
T_sim can be large enough to ensure the stability of the results.
It should be noted that at least T_sim=10000 is required to guar-
antee the stability of the results. The default setting is seed=10.
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Table 4.4 illustrates that using T_sim=10000 renders stable re-
sults.

9. standardize, a logical value that specifies whether hypotheses re-
garding standardized or unstandardized regression coefficients
are evaluated. With standardize = TRUE hypotheses with re-
spect to standardized regression coefficients are evaluated. With
standardize = FALSE hypotheses with respect to unstandardized
regression coefficients are evaluated. In the R package bain, the
Bayes factors are calculated differently when standardized and
unstandardized coefficients are evaluated. The function seBeta
in the R package fungible is used to estimate the standardized re-
gression coefficients and their corresponding covariance matrix,
and the function lm in the R package stats is used to estimate the
unstandardized regression coefficients and their corresponding
covariance matrix. It should be highlighted that if the ordered
hypothesis for regression coefficients is included, standardize =
TRUE should be used. This is because, as explained earlier, stan-
dardized coefficients are comparable, but unstandardized coeffi-
cients are not. For other cases, standardize = FALSE.

10. ratio, an optional vector that specifies the ratio among the re-
gression coefficients for the population if H1 is one of the in-
terested hypotheses. For Situation 1, the ratio of the regression
coefficients 1: 1: · · · : 1 is used for Ha. For Situation 2, the ra-
tio of the regression coefficients 1: 1: · · · : 1 is used for H1. For
Situation 3, the ratio of the regression coefficients 1: 1: · · · : 1 is
used for H0 and the regression coefficients are computed such
that R2 = 0.13, and the ratio of the regression coefficients Kd:
(K − 1)d: · · · : 3d: 2d: d is used for H2, where d can be calcu-
lated by Equation 4.13. If the order of regression coefficients in
hypothesis H2 changes, the corresponding ratio will follow the
variation of the regression coefficients in the hypothesis. For Sit-
uation 4, the ratio is consistent with H1 in Situation 2, and the
ratio is reordered using the representative hypothesis (see Ap-
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pendix 4.B) for H1c. For Situation 5, the ratio is consistent with
H2 in Situation 3, and the ratio is reordered using the representa-
tive hypothesis (see Appendix 4.B) for H2c, where K is the num-
ber of predictors involved in the hypotheses. The elaborations
of how this leads to regression coefficients for the considered hy-
pothesis can be found in Appendix 4.B.

After running the function, the main outputs resulting from anal-
yses are the sample size required and the corresponding probability
that the Bayes factor is larger than BFthresh when either of the com-
peting hypotheses is true. As an example, if the following call to SS-
DRegression is executed,

library(SSDbain)

SSDRegression(Hyp1=’beta1=beta2=beta3=0’,Hyp2=’Ha’,k=3,

rho=matrix(c(1,0.2,0.2,0.2,1,0.2,0.2,0.2,1),nrow=3)

,R_square1=0,R_square2=0.13,T_sim=10000,BFthresh=3,eta=0.8,

seed=10,standardize=FALSE,ratio=c(1,1,1))

the results are obtained using fractions b = J/N , b = 2J/N and b = 3J/N
(with the aim of addressing the sensitivity to the specification of the
prior distribution):

using N=146 and fraction b=0.0205

P(BF0a>3|H0)=0.973

P(BFa0>3|Ha)=0.803

using N=120 and fraction b=0.0500

P(BF0a>3|H0)=0.918

P(BFa0>3|Ha)=0.804

using N=105 and fraction b=0.0857

P(BF0a>3|H0)=0.840

P(BFa0>3|Ha)=0.806

According to the results, the sample size required is 146 if the min-
imum fraction b = J/N is used. Moreover, the results of sensitivity
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analysis were summarized to develop a deeper understanding of the
impact of the prior distributions in applied Bayesian research. In this
chapter, the sensitivity analysis would entail adjusting the variance of
the prior distribution to see how much impact the variance of the prior
distribution makes on the final sample size. For example, if b = 2J/N
is used, the required sample size is 120, and if b = 3J/N is used, it is
105. Therefore, the probabilities P (BF0a > 3|H0) and P (BFa0 > 3|Ha)
are becoming closer with the increase of the fraction b. If the re-
searchers want to obtain a conservative result (e.g., a convincing ev-
idence should be required before another hypothesis is preferred over
the null hypothesis), researchers can collect data with sample size 146;
and if they want to obtain a similar probability for P (BF0a > 3|H0) and
P (BFa0 > 3|Ha), researchers can collect data with sample size 105.

4.7 Sample Size Tables for Multiple Linear
Regression

To investigate the sample size and highlight the properties of sam-
ple size determination for multiple linear regression, a total of seven
tables were made. Tables 4.1-4.6 containing two predictors, three pre-
dictors, and four predictors, where the predictors are uncorrelated
(ρ = 0), weakly correlated (ρ = 0.2), and strongly correlated (ρ = 0.5)
are shown. Tables 4.1-4.3 show the regression coefficients for the pop-
ulations under hypotheses H0, H1, H2, Ha, H1c, and H2c for the stan-
dard situation, which are introduced in the next paragraph. These
regression coefficients are obtained via the approach elaborated in
Appendix 4.B. Tables 4.4-4.6 demonstrate the required sample size
and the corresponding probability that the Bayes factor is larger than
BFthresh = 3, which can be used if users agree with the "standard". Of
course, users can differ in opinion, use other values and compute the
sample size using the R package SSDbain. Finally, the sample size
comparison under frequentist and Bayesian frameworks is shown in
Table 4.7.
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Currently, standard choices for Bayesian sample size determina-
tion do not exist and are proposed in this paper (see Tables 4.1-4.3).
The standard situation is defined as R2 = 0.13, BFthresh = 3, η = 0.8,
and the ratios of the regression coefficients for different hypotheses
are described as follows. For Situation 1, the ratio of the regression
coefficients 1: 1: · · · : 1 is used for Ha. For situation 2, the ratio of
the regression coefficients 1: 1: · · · : 1 is used for H1. For Situation 3,
the ratio of the regression coefficients Kd: (K − 1)d: · · · : 3d, 2d: d is
used for H2, where d can be calculated by Equation 4.13. If the order
of regression coefficients in hypothesis H2 changes, the corresponding
ratio will follow the variation of the regression coefficients in the hy-
pothesis. The ratio of the regression coefficients 1: 1: · · · : 1 is used
for H0 and the coefficients are computed such that R2 = 0.13. For Sit-
uation 4, the ratio is consistent with H1 in Situation 2, and the ratio
is reordered using the representative hypothesis (see Appendix 4.B)
for H1c. For Situation 5, the ratio is consistent with H2 in Situation
3, and the ratio is reordered using the representative hypothesis (see
Appendix 4.B) for H2c. As for the definition of standard situation, the
reasons are as follows.

1. The coefficient of determination R2 = 0.13 is selected, which cor-
responds to Cohen’s medium effect size f 2 = 0.15. As phrased by
Cohen (1988), the medium effect size is conceived as a size large
enough to be visible to the naked eye. Meta-analyses showed
that the average published effect size is around the medium ef-
fect size (Bakker, Van Dijk, & Wicherts, 2012), which therefore
coincides with the needs of most psychologists.

2. The threshold of Bayes factor BFthresh is 3 in the standard sit-
uation because the Bayes factor of 3 often matches the amount
of evidence with a p−value<0.05 (Jeffreys, 1961; Wetzels et al.,
2011). Besides, Dienes (2014) argued that the corresponding
Bayes factor is about 3 when a result is just significant. Further-
more, the Bayes factor of 3 deserving attention is a consensus in
the scientific community, which represents a just convincing ev-
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idence boundary (Dienes & Mclatchie, 2018; Jeffreys, 1961; Kass
& Raftery, 1995).

3. The value of η = 0.8 means that the probability that the Bayes
factor exceeds the BFthresh = 3 is at least 0.8 no matter which
hypothesis in one pair of hypotheses is true. The value of 0.80
is used because it is a commonly accepted value for sufficient
power in the classical framework. A pair of hypotheses is con-
sidered because the Bayes factors is symmetric in the sense that
it allows accumulating evidence for either of these two hypothe-
ses. This is in contrast with the p-values in null hypothesis sig-
nificance testing where the type I error rate is 0.05, whereas the
Type II error rate is 0.2.

4. According to the guidance in Vanbrabant, Van De Schoot, and
Rosseel (2015), the differences between the regression coefficients
should be equally spaced, and the common difference is denoted
by d. Therefore, if H2 is considered, the ratio of Kd: · · · : 3d: 2d:
d, where d can be calculated by Equation 4.13, or a reordering
of the arithmetic sequence Kd, · · · , 3d, 2d, d for the variations of
H2 is chosen. If H1 and Ha are considered, the ratio of 1: 1: · · · :
1 is chosen, where 1 may be replaced by -1 if the smaller than
symbol < is used in H1. If H0 from Situation 3 is considered, the
ratio of the regression coefficients is 1: 1: · · · : 1. This ratio makes
the absolute value of regression coefficients equal.

The results in Tables 4.4-4.6 are obtained with set.seed=10. To il-
lustrate the stability of the results with T=10000, Table 4.4 also presents
(within parenthesis) the obtained sample sizes using set.seed=1234.
As can be seen, the results of sample size determination with T =
10000 is not sensitive to the choice of the seed. Based on the results
presented in these tables, several features of SSD can be highlighted.
1) The required sample size for H1 versus H0 is smaller than that for
Ha versus H0. For example, in Table 4.4, when ρ = 0, the sample size is
121 if H0 is compared with Ha, whereas a sample size of 90 is needed
if H1 is used instead of Ha. The reason is that H1 is more specific
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than Ha, which is illustrated in Figure 4.3. The shaded area on the
left of Figure 4.3 is the parameter space of Ha (no constraints are im-
posed on the standardized regression coefficients β1 and β2), and the
shaded area on the right of Figure 4.3 is the parameter space of H1.
The parameter space for H1 is contained in Ha. Therefore, it is easier
to distinguish H0 from H1 than from Ha. Hence, a higher probabil-
ity that the Bayes factor exceeds a determined threshold is obtained
and consequently a smaller sample-size is needed. 2) As the fraction
used in the prior distribution increases from b = J/N to b = 2J/N ,
then to b = 3J/N , the required sample size is reduced if H0 is one of
the hypotheses under consideration. For example, in Table 4.5, when
H0 is compared with H2 for ρ = 0, the required sample size is 776 for
b = J/N , 675 for b = 2J/N , and 624 for b = 3J/N . This can be explained
as follows. First, the sample size is N = max {N1,N2}, where N1 is the
sample size when H0 is true, and N2 is the sample size when the com-
peting hypothesis is true. Second, from Tables 4.4 to 4.6, probability
p0 is much larger than 0.8, indicating that it is easier for hypothesis
H0 than for its competing hypothesis to reach the threshold of 3; thus
the required sample size is N2 obtained if the competing hypothesis is
true. Third, the complexity c0 becomes larger as fraction b increases.
The reason is that a larger b implies a prior with a smaller variance
as shown in Equation 4.10, such that the prior density evaluated at
β1 = β2 = · · · = βK or β1 = β2 = · · · = βK = 0 in Equation 4.4 is larger.
Therefore, the Bayes factors BF0a, BF01, and BF02 decrease as b in-
creases. Taking the inverse yields as the opposite, the Bayes factors
BFa0, BF10, and BF20 increase as b increases. Thus, the sample size
N2 decreases with b. The advice about how to choose b is described
in the final paragraph of Section 4.6. 3) When H0 is compared with
the order hypothesis H2, the required sample size is much larger than
that in other cases in the same table. For example, in Table 4.4, when
H0 versus H2 for ρ = 0.5, the required sample size is 2721 for b = J/N ,
2527 for b = 2J/N , and 2426 for b = 3J/N . This occurs because the
regression coefficients are relatively close to each other as presented
in Tables 4.1-4.3. However, the sample size can be adjusted by enlarg-
ing the common difference from d to a multiple of d. For example,
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the ratio with three predictors can be chosen as (7d: 4d: d) instead of
(3d: 2d: d) in Table 4.5, which will reduce the sample size because it
is easier to distinguish regression coefficients that have more unequal
sizes. 4) In general, as the number of predictors increases, the sam-
ple size required increases. For example, if H0 is compared with Ha,
ρ = 0, and fraction b = J/N , from Tables 4.4 to 4.6, we observe that the
sample size increases from 121 to 147, then to 170 when the number
of predictors increases from 2 to 3, then to 4. This is consistent with
the property for the classical sample size in Table 4.7. From Table 4.7,
we can see that the sample size increases from 68 to 77, then to 85 for
2, 3, and 4 predictors, respectively. This is because when more predic-
tors are added a higher level of evidence is required to state that any
of them are significant (classical) or substantial (Bayesian).

As shown in Table 4.7, the comparison of sample size for the stan-
dard situation in the Bayesian framework and standard a priori power
analysis are illustrated. The focused situation is H0 vs. Ha because
this situation exists in both classical and Bayesian hypothesis testing.
Situation H0 vs H1 in Table 4.7 is used for supplementary illustra-
tion. From Table 4.7, compared with the classical sample size, a larger
sample size is required for the SSD based on the Bayes factor. For
instance, if H0: β1 = β2 = 0 versus Ha, the sample size is 68 in the clas-
sical framework, whereas the sample size is 121 if the fraction b = 2/N
is used for the Bayes factor. When b = 2/N is used, the Bayes factor is
very conservative (see Hoijtink, Mulder, et al., 2019). In other words,
the sample size has to be large enough to provide convincing evidence
to support the non-null hypothesis. Furthermore, for a less conserva-
tive value, such as b = 2J/N , and b = 3J/N the required sample size
decreases. According to the first item in Table 4.7, the sample size is
104 for b = 2J/N , and 95 for b = 3J/N , which approaches the classical
sample size of 68 although it remains slightly larger. Next, when H0 is
compared with the sign hypothesis H1, the required sample sizes (de-
pending on b) may even be smaller than those in the classical frame-
work. For example, when the number of predictors K = 3, the required
sample size is 71 for b = 2J/N and 66 for b = 3J/N , which are smaller
than the classical sample size of 77.
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(a) H0: β1 = β2 = 0 vs. Ha
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(b) H0: β1 = β2 = 0 vs. H1: β1 > 0 & β2 > 0

Figure 4.3: The gray area in Figure (a) is the admissible parameter
space for Ha, the gray area in Figure (b) is the admissible parameter
space for H1, and the black bold dot is the admissible parameter space
for H0.
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The sample size resulting from Bayesian testing may be larger than
the sample size resulting from power analysis, but the Bayes factor
provides more information than the p-value. 1) The Bayes factor can
quantify the degree of evidence supporting one hypothesis over an-
other. For example, in Tables 4.4 to 4.6, the sample size is calculated
such that the degree of evidence of supporting the true hypothesis is
three times larger than the competing hypothesis. 2) Researchers can
obtain more specific knowledge if they use an informative hypothe-
sis instead of the traditional alternative hypothesis. For example, if
H0 is compared with H2, researchers not only know if the three coef-
ficients are equal or not, but also know the order of the coefficients.
3) The required sample size can be adjusted through sensitivity anal-
ysis by modifying the scaling parameter of the prior distribution. If
researchers favor the null hypothesis, a larger scaling parameter that
corresponds to a smaller fraction b would be chosen because it makes
it easier to reject the alternative in favor of the null hypothesis; and
if they want to obtain relatively symmetrical evidence for supporting
one pair of competing hypotheses, fraction b can be chosen such that
both probabilities become as equal as possible. This can be illustrated
using the comparison of H0 with H1 in Table 4.5. If b = J/N is cho-
sen, the probability that the Bayes factor is larger than 3 is 0.964 when
H0 is true, but the probability that the Bayes factor is larger than 3 is
0.802 when H1 is true. If b = 3J/N is chosen, the probability that the
Bayes factor is larger than 3 is 0.811 when H0 is true, and the probabil-
ity that the Bayes factor is larger than 3 is 0.833, which are relatively
close.

Illustrative example 1
A study has been designed by a psychologist to explore the rela-

tionship between the SAT score of students and achievement levels (β1),
cultural factors (β2), socioeconomic status (β3), and psychological factors
(β4). To determine the sample size it is assumed that the correlation
between each pair of predictors equals 0.3. The psychologist plans to
compare hypothesis H0: β1 = β2 = β3 = β4 = 0 with H1: β1 > 0 & β2 > 0
& β3 > 0 & β4 > 0. Based on experience, the psychologist expects that
R2 will be about 0.09. The sample size should be large enough such
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that BFthresh = 3 and η = 0.8 are satisfied. The required sample size
can be determined using the following call to SSDRegression.

Res<-SSDRegression(Hyp1=’beta1=beta2=beta3=beta4=0’,

Hyp2=’beta1>0&beta2>0&beta3>0&beta4>0’,k=4,

rho=matrix(c(1,0.3,0.3,0.3,0.3,1,0.3,0.3,0.3,

0.3,1,0.3,0.3,0.3,0.3,1),nrow=k),

R_square1=0,R_square2=0.13,T_sim=10000,BFthresh=3,

eta=0.8,seed=10,standardize=FALSE,ratio=c(1,1,1,1))

The results are as follows.

using N=151 and fraction b=0.0265

P(BF01>3|H0)=0.990

P(BF10>3|H1)=0.803

using N=107 and fraction b=0.0748

P(BF01>3|H0)=0.948

P(BF10>3|H1)=0.805

using N=78 and fraction b=0.1538

P(BF01>3|H0)=0.862

P(BF10>3|H1)=0.802

Based on the above results, if the researchers use the minimum
fraction b = J/N of the data for the prior distribution, the required
sample size is 151. If the fraction of the data is increased to two times
of the minimum fraction 2J/N , the required sample size is reduced to
107. If the fraction of the data is increased to three times of the mini-
mum fraction 3J/N , the required sample size is reduced to 78. If the
resources are sufficient, and the psychologist wants to obtain a larger
probability that the Bayes factor supports the null hypothesis if it is
true, he or she should use a smaller b. If the resources are insufficient,
or the psychologist wants to obtain two relatively close probability
values regardless of whether the null or non-null hypothesis is true, a
larger b is recommended. Specifically, from the result above, we can
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see that when b = 0.0265 is used, the probability that the Bayes fac-
tor supports the null hypothesis H0 is 0.990, which is larger than the
probability of 0.803 that the Bayes factor supports H1. If b = 0.1538
is used, the probability that the Bayes factor supports H0 is 0.862, and
the probability that the Bayes factor supports H1 is 0.802. These two
probabilities are much closer.

Illustrative example 2 Considering the example from Vanbrabant
et al. (2015), a group of psychologists wants to investigate the relation-
ship among IQ and social skills (β1), interest in artistic activities (β2),
and the use of complicated language patterns (β3). The hypotheses of
interest are H1: β1 > 0 & β2 > 0 & β3 > 0 versus Hc: not H1. The psy-
chologists expect a medium effect size f 2 = 0.15, which corresponds
to a coefficient of determination R2 = 0.13. The correlation matrix

Σ =

 1 0.2 0.2
0.2 1 0.2
0.2 0.2 1

. After looking up the corresponding results in

Table 4.5, the following information can be obtained

using N=40 and f r a c t i o n b=0.0750
P( BF1c >3|H1)=0.809
P( BFc1 >3|Hc)=0.827

Based on the above results, the required sample size is 40. As elabo-
rated earlier in this chapter, for hypotheses β1 > 0 & β2 > 0 & β3 > 0
and Hc, the Bayes factor is not sensitive to the prior distribution re-
gardless of which fraction b is used.

4.8 Conclusion

This paper proposed a sample size determination method to evalu-
ate the classical null, unconstrained, and informative hypotheses (and
their complement) in the context of the multiple linear regression
model. The presented sample size tables will benefit researchers as
they can look up the necessary sample size if they aim to use the stan-
dard Bayesian situation, that is, BFthresh = 3, η = 0.8, R2 = 0.13, and
the ratios of the regression coefficients for different hypotheses are
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described as follows. For Situation 1, the ratio of the regression co-
efficients 1: 1: · · · : 1 is used for Ha. For situation 2, the ratio of the
regression coefficients 1: 1: · · · : 1 is used for H1. For Situation 3, the
ratio of the regression coefficients Kd: (K − 1)d: · · · : 3d: 2d: d is used
for H2, where d can be calculated by Equation 4.13. If H0 from Situa-
tion 3 is considered, the ratio of the regression coefficients is 1: 1: · · · :
1. If the order of regression coefficients in hypothesis H2 changes, the
corresponding ratio will follow the variation of the regression coeffi-
cients in the hypothesis. For Situation 4, the ratio is consistent with
H1 in Situation 2, and the ratio is reordered using the representative
hypothesis (see Appendix 4.B) for H1c. For Situation 5, the ratio is
consistent with H2 in Situation 3, and the ratio is reordered using the
representative hypothesis (see Appendix 4.B) for H2c, where K is the
number of predictors involved in the hypotheses. If researchers aim to
use other situations than the standard ones covered in the tables, the
function SSDRegression, which is part of the R package, SSDbain can
be used to help them calculate the sample size. Compared with the
unconstrained hypothesis, the introduction of informative hypotheses
results in a substantial gain in the probability that the Bayes factor
exceeds the threshold and thus reduces the required sample size.

This paper makes an important contribution to sample size de-
termination for informative hypotheses using the Bayes factor within
multiple linear regression models. However, it has some limitations.
First, sample size determination is available if the assumptions of the
regression model used to simulate the data also apply to real data.
Second, as missing data may occur in real data, the researchers will
have to guess which proportion of their data is missing, and adjust
the required sample size accordingly. Third, models commonly used
at present, such as the t-test, one-way ANOVA and multiple linear
regression have been considered. However, SSD extensions to more
complex models, like structural equation modeling, and general mul-
tivariate models still have to be developed and will be added to the
package of SSDbain in the future.

Despite these limitations, the R package SSDbain should be a wel-
come addition to the applied researcher’s toolbox, and can help the re-
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searcher identify the required sample sizes while planning a research
project.

4.A SSD based on dichotomy search
algorithm

In this appendix, an improved algorithm that can effectively speed up
the calculation process based on the dichotomy search is introduced.
As described in the basic algorithm in the Section 4.5, a large number
of iterations are conducted for the calculation process from Steps 2
to 5, which places a great burden on the computation and costs more
time to reach the conditions in Step 5. The presented search-based
process can sharply reduce the computing burden by reducing the
number of iterations. The basic idea of the proposed algorithm is to
adjust the sample size gradually using a dichotomy algorithm until
ps ≥ η and pv ≥ η hold. Steps 4-5 described in the basic algorithm in
Section 4.5 are replaced by the following steps.

Step 4: Define the lower and upper bounds of sample size N for
the dichotomy search method.

To use the dichotomy search method, the interval of the sample
size needs to be determined. Let LB and UB denote the lower and
upper bounds of the optimal sample size N , where the LB cannot be
smaller than 10. To narrow the distance between the lower and upper
bounds, the following steps are conducted.

• Compute ps and pv using Steps 2-4 from the basic algorithm
based on N = 100.

• (i) If ps ≥ η and pv ≥ η, then set N = N
2 , and repeat Steps 2-4

and (i) until ps < η or pv < η. Then set LB = N , UB = 2N .

(ii) If ps < η or pv < η, then set N = 2N , and repeat Steps 2-4
and (ii) until ps ≥ η and pv ≥ η. Then set LB = N

2 , UB = N .

Step 5: Compute the optimal sample size
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(I) Based on the LB and UB determined by the above, let Nmid =
LB+UB

2 .

(II) Compute ps and pv with N = Nmid using Steps 2-4.

(III) If ps ≥ η and pv ≥ η, UB = Nmid; else, LB = Nmid.

(IV) Update the value of Nmid with Nmid = LB+UB
2 .

(V) Return to Step II with N = Nmid and repeat Steps II-V until
Nmid = LB+ 1 satisfied. Then N = Nmid.

4.B How to calculate regression coefficients
based on the coefficient of determination
and the ratio among the regression
coefficients

In this appendix, the process of calculating the regression coefficients
is described if the input ingredients coefficient of determination R2

and the ratio among the regression coefficients are given instead of the
regression coefficients given directly. This matter has been mentioned
in Section 4.5. Based on the model in Equation 4.1, the regression
coefficients can be computed as follows.

1. Variance can be calculated on both sides of Equation 4.1:

VAR[yi] = VAR[
K∑
k=1

βkxik] +VAR(ϵi). (4.11)

2. Divide by VAR[yi] on both sides of Equation 4.11,

1 = R2 +
VAR(ϵi)
VAR[yi]

. (4.12)
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3. As presented in Section 4.5, VAR[xik]=1 and VAR[yi]=1. Com-
bining with Equation 4.10 and 4.11, the formula for the coeffi-
cient of determination R2 can be rewritten as

R2 = VAR[
K∑
k=1

βkxik] =
K∑
k=1

β2
k + 2

∑
k<k′

βkβk′ρkk′, (4.13)

where ρkk′ denotes the correlation between predictor variables
xik and xik′, which is the element in the correlation matrix Σ.

The ratio β1 : β2 : · · · : βK can be ascertained from a pilot study, or
published results from a similar study, and can be estimated based on
the expert’s advice and the prior knowledge of the field. If hypotheses
Ha and H1 are considered, and the ratio β1 : β2 : · · · : βK = 1 : 1 : · · · : 1,
then β1 = β2 = · · · = βK . For hypothesis H0 : β1 = β2 = · · · = βK itself, the
relationship of the regression coefficients is also β1 = β2 = · · · = βK . By
substituting R2, Σ, β1 = β2 = · · · = βK into Equation 4.13, β1,β2, · · · ,βK
can be derived. If hypotheses H2 is considered, and the ratio β1 :
β2 : · · · : βK = r1 : r2 : · · · : rK , then β1 = r1/rKβK , β2 = r2/rKβK , · · · ,
βK−1 = rK−1/rKβK . By substituting R2, Σ, β1 = r1/rKβK , β2 = r2/rKβK ,
· · · , βK−1 = rK−1/rKβK into Equation 4.13, βK can be derived. Subse-
quently, β1, β2,· · · , βK−1 can be obtained. It should be noted that the
default signs of the regression coefficients are positive for all the hy-
potheses, unless they are designated to be negative in the hypotheses.

It will now be explained how the population regression coefficients
for the complement of H1 are determined. Changing the sign of the
regression coefficients once is called a violation. The number of vio-
lations is determined by the number of the signs of regression coeffi-
cients changed. The complement hypothesis of H1 can be divided into
K categories based on the number of violations. That is, if K predictors
are considered, there will be K categories, namely one deviation from
H1, two violations from H1, · · · , and K violations from H1. To facilitate
the reader’s understanding of the proposed approach, two examples
are provided with two and five predictors. First, this chapter discusses
the simplest situation where only two predictors are needed. In this
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situation, hypothesis H1 can be expressed as β1 > 0&β2 > 0. The com-
plement of H1 with two predictors includes the following three cases:
Hc1 : β1 < 0&β2 > 0.
Hc2 : β1 > 0&β2 < 0.
Hc3 : β1 < 0&β2 < 0.
In the above three cases, hypotheses Hc1 and Hc2 have one thing in
common. They have one violation from H1. The order could also be
Hc2, Hc1, and Hc3, because the Bayes factor BFc1,1 for Hc1 versus H1
if data are simulated from populations Hc1 and BFc2,1 for Hc2 versus
H1 if data are simulated from populations Hc2 are almost the same.
That is, there is no preference for one of these two hypotheses. Dif-
ferent from these two hypotheses, hypothesis Hc3 has two violations.
The greater the numbers of violations in the complement of H1, the
easier it is to distinguish the complement hypothesis from hypothesis
H1. Therefore, the Bayes factor BFc3,1 for Hc3 versus H1 if data are
simulated from population Hc3 is larger than the BFc1,1 and BFc2,1 if
data are simulated from populations Hc1 and Hc2, respectively. To de-
termine the regression coefficients for the complement of H1, a repre-
sentative hypothesis has to be selected. In this chapter, the hypothesis
corresponding to the median of the number of hypotheses ordered us-
ing the number of violations is selected as the representative hypothe-
sis of the complement hypothesis of H1, in this case, Hc2. The measure
of the median is used because it refers to the most central value in
the ascending Bayes factors which are ordered using the number of
violations.

Based on the ratio β1: β2=1:1 for H1, the relationship of the regres-
sion coefficients under the complement hypothesis H1c is β2 = −β1,
where β1 > 0. By substituting R2, ρ, and β2 = −β1 into Equation 4.13,
the regression coefficients can be calculated.

To further clarify the proposed method, a more complex scenario
with five predictors is discussed. Hypothesis H1 can be expressed as
β1 > 0&β2 > 0&β3 > 0&β4 > 0&β5 > 0. To find the hypothesis repre-
sentative of the complement of H1, all the possible hypotheses in the
complement are ordered using the number of violations. First, only
one violation is considered. The number of hypotheses in this case
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will be
(5
1
)
. In other words, five hypotheses should be considered if

one violation happens:
Hc1 : β1 < 0&β2 > 0&β3 > 0&β4 > 0&β5 > 0.
Hc2 : β1 > 0&β2 < 0&β3 > 0&β4 > 0&β5 > 0.
Hc3 : β1 > 0&β2 > 0&β3 < 0&β4 > 0&β5 > 0.
Hc4 : β1 > 0&β2 > 0&β3 > 0&β4 < 0&β5 > 0.
Hc5 : β1 > 0&β2 > 0&β3 > 0&β4 > 0&β5 < 0.
It should be noted that the order is arbitrary, and any permutation
would also be acceptable. The order is irrelevant because all hypothe-
ses containing one violation will lead to about the same Bayes factors
BFci,1 for Hci versus H1 if data are simulated from populations Hci
(i = 1, · · · ,5), respectively. Similarly, in the following, permutations
are also arbitrary for the same number of violations.

If there are two violations in a hypothesis, the total number of hy-
potheses will be

(5
2
)
, that is ten. We name these hypotheses as Hc6,

Hc7,...and Hc15, which are given as follows:
Hc6 : β1 < 0&β2 < 0&β3 > 0&β4 > 0&β5 > 0.
Hc7 : β1 < 0&β2 > 0&β3 < 0&β4 > 0&β5 > 0.
Hc8 : β1 < 0&β2 > 0&β3 > 0&β4 < 0&β5 > 0.
Hc9 : β1 < 0&β2 > 0&β3 > 0&β4 > 0&β5 < 0.
Hc10 : β1 > 0&β2 < 0&β3 < 0&β4 > 0&β5 > 0.
Hc11 : β1 > 0&β2 < 0&β3 > 0&β4 < 0&β5 > 0.
Hc12 : β1 > 0&β2 < 0&β3 > 0&β4 > 0&β5 < 0.
Hc13 : β1 > 0&β2 > 0&β3 < 0&β4 < 0&β5 > 0.
Hc14 : β1 > 0&β2 > 0&β3 < 0&β4 > 0&β5 < 0.
Hc15 : β1 > 0&β2 > 0&β3 > 0&β4 < 0&β5 < 0.
Similarly, there are

(5
3
)

(ten) hypotheses with three violations, which
are shown as follows:
Hc16 : β1 < 0&β2 < 0&β3 < 0&β4 > 0&β5 > 0.
Hc17 : β1 < 0&β2 < 0&β3 > 0&β4 < 0&β5 > 0.
Hc18 : β1 < 0&β2 < 0&β3 > 0&β4 > 0&β5 < 0.
Hc19 : β1 < 0&β2 > 0&β3 < 0&β4 < 0&β5 > 0.
Hc20 : β1 < 0&β2 > 0&β3 > 0&β4 > 0&β5 < 0.
Hc21 : β1 > 0&β2 < 0&β3 < 0&β4 < 0&β5 > 0.
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Hc22 : β1 > 0&β2 < 0&β3 < 0&β4 > 0&β5 < 0.
Hc23 : β1 > 0&β2 < 0&β3 > 0&β4 < 0&β5 < 0.
Hc24 : β1 > 0&β2 < 0&β3 > 0&β4 < 0&β5 < 0.
Hc25 : β1 > 0&β2 > 0&β3 < 0&β4 < 0&β5 < 0.
There are

(5
4
)

(five) hypotheses with four violations, which are dis-
played as follows.
Hc26 : β1 < 0&β2 < 0&β3 < 0&β4 < 0&β5 > 0.
Hc27 : β1 < 0&β2 < 0&β3 < 0&β4 > 0&β5 < 0.
Hc28 : β1 < 0&β2 < 0&β3 > 0&β4 < 0&β5 < 0.
Hc29 : β1 < 0&β2 > 0&β3 < 0&β4 < 0&β5 < 0.
Hc30 : β1 > 0&β2 < 0&β3 < 0&β4 < 0&β5 < 0.
Finally, the hypotheses with five violations only have

(5
5
)

(one) case,
which is given as follows
Hc31 : β1 < 0&β2 < 0&β3 < 0&β4 < 0&β5 < 0.

As mentioned in the last example, the Bayes factor BF1c,1 for H1c
versus H1 increases with the number of violations. There are totally(5
1
)

+
(5
2
)

+
(5
3
)

+
(5
4
)

+
(5
5
)

= 25 − 1 = 31 hypothesis for the complement of
H1. After all the hypotheses are presented, the representative hypoth-
esis Hc16 is selected, which is the hypothesis corresponding to the me-
dian of the hypotheses ordered using the number of violations. Based
on the ratio β1: β2: β3: β4: β5=1:1:1:1:1 for H1, the relationship of
the regression coefficients under the complement hypothesis H1c is
β1 = β2 = β3 = −β4 = −β5, where β4 and β5 are larger than zero. By
substituting R2, ρ, and β1 = β2 = β3 = −β4 = −β5 into Equation 4.13,
the regression coefficients can be calculated.

In summary, we can conclude that the complement hypotheses of
H1 include

(k
1
)
+
(k
2
)
+...+

(k
k

)
= 2k−1 cases. The hypothesis corresponding

to the median number of {1, 2, · · · , 2k − 1} (i.e., the hypothesis H2k−1)
is selected as representative of the complement hypothesis of H1. If
the ratio β1 : β2 : · · · : βK = 1 : 1 : · · · : 1, then β1 = β2 = · · ·βK−1 = βK .
By substituting R2, Σ, β1 = β2 = · · ·βK−1 = βK into Equation 4.13, βK
can be derived. Subsequently, β1, β2,· · · , βK−1 can be obtained. The
default signs of the regression coefficients are positive for all the hy-
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potheses at first. If the signs of the regression coefficients are negative
in the representative hypothesis, they will be finally designated to be
negative.

Another issue that needs to be addressed is how to calculate the
regression coefficients for the complement of H2. First, with two pre-
dictors H2 is given as β1 > β2. There is only one hypothesis for the
complement of H2, namely Hc1: β1 < β2. There is no doubt that Hc1 can
be regarded as the representative hypothesis. Based on Table 4.1, if H2
is true, the ratio β1: β2=2:1 for H2. The relationship of the regression
coefficients under the complement hypothesis H2c is β1: β2=1:2, where
β1 and β2 are larger than zero. By substituting R2, ρ, and β1: β2=1:2
into Equation 4.13, the regression coefficients can be calculated.

In the following examples, swapping the regression coefficients of
adjacent positions once is called a violation. The number of violations
is determined by the number of regression coefficients of adjacent po-
sitions swapped. This process can be described as follows. For the
convenience of description, a specific example is used for illustration.
For example, H2 : β1 > β2 > β3 is considered, β1 and β2 are at ad-
jacent positions, and β2 and β3 are also at adjacent positions. After
swapping adjacent positions β1 and β2, a new order Hc1 : β2 > β1 > β3
can be obtained. In the new order, β1 and β3 are at adjacent posi-
tions. Swap them, and a new order can be obtained again, which is
Hc2 : β2 > β3 > β1. By swapping adjacent positions β2 and β3, the order
Hc3 : β3 > β2 > β1 can be obtained. During this process, the adjacent
positions are swapped three times. Therefore, there are three viola-
tions from H2 : β1 > β2 > β3 to Hc3. The complement hypothesis of H2
can be divided into

(K
2
)

categories based on the number of violations.
For three or more predictors, there is more than one hypothesis for the
complement of H2. Therefore, all the possible hypotheses should be
considered and a representative one should be selected. For three pre-
dictors, there are three categories for the complement hypothesis of
H2, namely one violation from H2, two violations from H2, and three
violations from H2. There are two hypotheses with one violation:
Hc1 : β2 > β1 > β3.
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Hc2 : β1 > β3 > β2.
There are two hypotheses containing two violations:
Hc3 : β2 > β3 > β1.
Hc4 : β3 > β1 > β2.
There is only one hypothesis with three violations:
Hc5 : β3 > β2 > β1.
As the Bayes factor BF2c,2 for H2c versus H2 becomes larger with an
increasing number of violations, the hypothesis corresponding to the
median of the number of hypotheses ordered using the number of vi-
olations (Hc3 : β2 > β3 > β1) is selected as the hypothesis representing
the complement of H2. Based on Table 4.1, if H2 is true, the ratio β1:
β2: β3=3:2:1 for H2. The relationship of the regression coefficients un-
der the complement hypothesis Hc is β1: β2: β3=1:3:2 (reordered using
Hc3: β2 > β3 > β1), where β1, β2, and β3 are larger than zero. By sub-
stituting R2, ρ, and β1: β2: β3=1:3:2 into Equation 4.13, the regression
coefficients can be calculated.

To better summarize the rule of the selection of the representative
hypothesis, the situation with four predictors H2 : β1 > β2 > β3 > β4 is
further discussed. The hypotheses with one, two, three and four vio-
lations are as follows:
One violation:
Hc1 : β2 > β1 > β3 > β4.
Hc2 : β1 > β3 > β2 > β4.
Hc3 : β1 > β2 > β4 > β3.
Two violations:
Hc4 : β2 > β3 > β1 > β4.
Hc5 : β2 > β1 > β4 > β3.
Hc6 : β3 > β1 > β2 > β4.
Hc7 : β1 > β3 > β4 > β2.
Hc8 : β1 > β4 > β2 > β3.
Three violations:
Hc9 : β3 > β2 > β1 > β4.
Hc10 : β2 > β3 > β4 > β1.
Hc11 : β3 > β1 > β4 > β2.
Hc12 : β1 > β4 > β3 > β2.
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Hc13 : β4 > β1 > β2 > β3.
Four violations:
Hc14 : β3 > β2 > β4 > β1.
Hc15 : β2 > β4 > β3 > β1.
Hc16 : β3 > β4 > β1 > β2.
Hc17 : β4 > β1 > β3 > β2.
Hc18 : β4 > β2 > β1 > β3.
Five violations:
Hc19 : β3 > β4 > β1 > β2.
Hc20 : β4 > β2 > β3 > β1.
Hc21 : β2 > β4 > β1 > β3.
Hc22 : β4 > β3 > β1 > β2.
Six violations:
Hc23 : β4 > β3 > β2 > β1.
Overall, there are 23 hypotheses for the complement of H2. Simi-
larly, the hypothesis corresponding to the median of the number of
hypotheses ordered using the number of violations (Hc12 : β1 > β4 >
β3 > β2) is recommended as the representative hypothesis of the com-
plement hypothesis of H2. Based on Table 4.1, if H2 is true, the ratio
β1: β2: β3: β4=4:3:2:1 for H2. The relationship of the regression coeffi-
cients under the complement hypothesis H2c is β1: β2: β3: β4=4:1:2:3
(reordered using Hc12: β1 > β4 > β3 > β2), where β1, β2, β3 and β4 are
larger than zero. By substituting R2, ρ, and β1: β2: β3: β4=4:1:2:3 into
Equation 4.13, the regression coefficients can be calculated.

By summarizing the current examples, the total number of hy-
potheses in the complement of H2 is K! − 1. The hypothesis corre-
sponding to the median of the number of hypotheses ordered using
the number of violations (i.e., the hypothesis HK!/2) can be selected as
the representative hypothesis. If the ratio β1 : β2 : · · · : βK = r1 : r2 :
· · · : rK for H2, the ratio of the complement hypothesis of H2 would be
obtained based on the order of hypothesis HK!/2. By substituting R2,
Σ, and the ratio of the complement hypothesis into Equation 4.13, βK
can be derived. Subsequently, β1, β2,· · · , βK−1 can be obtained.

Some researchers may recommend placing the regression coeffi-
cients under the complement of H1/H2 on the boundary of H1/H2 (set

123



4. Sample Size Determination for Bayesian Testing of Informative

hypothesis in Linear Regression Models

all regression coefficients equal to 0). Although the boundary value
does not belong to H1 or H2, it is the value closest to H1 or H2. How-
ever, the value of the Bayes factors BF1c,1 for H1c versus H1 or BF2c,2
for H2c versus H2 would be always around 1 no matter how large the
sample size is, that is, neither hypothesis is preferred over the other.
Therefore, SSD cannot be performed if the regression coefficients for
the complement are based on the boundary of the parameter space of
H1 or H2.
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Chapter 5

Discussion 1

Researchers in the behavioral, biomedical and social sciences need to
determine the sample size in the design phase of an empirical study.
However, many behavioral, biomedical and social researchers often do
not know how to determine the sample size for their study. Tools for
sample size determination such as G*power (Faul et al., 2007; Mayr
et al., 2007), nQuery Advisor (J. D. Elashoff, 2017), and PASS (NCSS,
2020) can provide a useful solution for these researchers. However,
these above-mentioned software programs are all based on the frame
of classical statistics that relies on null hypothesis significance testing
(NHST). Methodological research has shown that the p-value based
theory has inherent drawbacks and is one of the causes of the repli-
cation crisis in the field of behavioral, biomedical, and social sciences
(Berger & Sellke, 1987; Harlow et al., 1997/2016; Wagenmakers, 2007;
Masson, 2011). First, the p-value derived from NHST is a measure
of evidence against the null hypothesis, it is biased against the null
hypothesis, and it always rejects the null hypothesis as the number
of observations becomes large (Berger & Sellke, 1987; Harlow et al.,
1997/2016). Second, frequent misuse of statistics such as the p-value
and threshold (like an α level of 0.05) for determining statistical sig-

1The author of this chapter is Qianrao Fu. All analyses presented in the chap-
ter can be reproduced using the research archive that can be found on github at
https://github.com/Qianrao-Fu/research-archive.
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nificance, that is, making a hard accept/reject decision (Wagenmakers,
2007; Masson, 2011), lead to publication bias (Ioannidis, 2005; Sim-
mons et al., 2011; Van Assen et al., 2014) and questionable research
practices (Fanelli, 2009; John, Loewenstein, & Prelec, 2012; Masicampo
& Lalande, 2012; Wicherts et al., 2016), which in turn are the root of
the replication crisis. Third, NHST is an "after the data collection has
finished" approach and without careful "pre-data collection" planning
additional data cannot be used after the p-value has been computed
and evaluated (Rouder, 2014).

Bayesian informative hypothesis testing has been developed as an
alternative to NHST. Hypothesis evaluation using the Bayes factor has
features that can avoid the drawbacks of NHST. First, it renders evi-
dence in favor of each of the hypotheses under consideration and can
also be used to quantify the support in the data in favor of the null
hypothesis. Second, as elaborated in Hoijtink, Mulder, et al. (2019),
the Bayes factor is a continuous measure that quantifies the degree of
evidence in favor of one hypothesis compared to another hypothesis
(i.e., if BF12 = 5 for H1 versus H2, the support from the data for H1 is
five times larger than that for H2). It does not provide a dichotomous
reject/do-not-reject decision with respect to the null hypothesis. It can
also be indecisive. For example, if BF12 is around 1 for H1 versus H2,
the data do not tell us which hypothesis to prefer. Third, the Bayes
factor can be updated when more data are collected. As the Bayes
factor can be interpreted without reference to an arbitrary threshold,
it helps to avoid publication bias and questionable research practices
and therefore can contribute to addressing the replication crisis.

To adapt to this new approach to hypothesis testing, sample size
determination in the Bayesian framework is urgently required. How-
ever, to the author’s best knowledge, only a few papers (Schönbrodt
& Wagenmakers, 2018; Stefan et al., 2019) and one shiny app exist
(Stefan et al., 2019) about sample size determination when the Bayes
factor is used to evaluate the null and alternative hypotheses. In par-
ticular, sample size recommendations for Bayesian informative hy-
potheses are scarce except for the research in (Klaassen, Hoijtink, &
Gu, 2019). To fill this research gap, the a priori sample size deter-
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mination R package SSDbain 2 (Fu, Hoijtink, & Moerbeek, 2021; Fu,
Moerbeek, & Hoijtink, 2021; Fu, 2021) regarding Bayesian informative
hypothesis testing has been developed in this dissertation. The R pack-
age SSDbain can help applied researchers to conduct their research for
some of the most often used statistic models, such as the two-sample
t-test, one-way ANOVA, and multiple linear regression. This chapter
summarizes the novel ideas and main contributions of this disserta-
tion. This chapter is structured as follows. The criterion for sample
size determination in the R package SSDbain is given in Section 5.1.
Section 5.2 summarizes the approach to sample size determination
that has been developed in this dissertation. The advantages and dis-
advantages comparing Bayesian updating and a priori sample size de-
termination are discussed in Section 5.3. Section 5.4 provides and dis-
cusses guidelines for the specification of the threshold that is required
for sample size determination using SSDbain. A discussion of the rea-
sons for promoting informative hypotheses is presented in Section 5.5.
The role of the prior distribution when using the Bayes factor for hy-
pothesis evaluation is addressed in Section 5.6. Section 5.7 discusses
the importance of examining the effect of the prior distribution on the
sample size through a sensitivity analysis. A comparison of sample
sizes obtained from the Bayesian and classical approaches to sample
size determination is made in Section 5.8. Section 5.9 concludes this
dissertation by summarizing the limitations and discussing potential
further research.

5.1 The Criterion for Sample Size
Determination

Four approaches exist for Bayesian sample size determination. The
first approach focuses on the posterior properties (Adcock, 1988; Joseph
& Belisle, 1997; Pham-Gia, 1997; Clarke & Yuan, 2006; Joseph, M’Lan,
& Wolfson, 2008). Specifically, the sample size is determined to mini-

2https://github.com/Qianrao-Fu/SSDbain
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mize the length of a posterior probability interval or to guarantee min-
imum posterior coverage of a given length. The second is a decision
theoretic approach (Lindley, 1997; Pham-Gia, 1997). In this approach,
the sample size determination is treated as a decision. Specifically,
the sample size decision can be based either on maximizing a utility
function or on minimizing a loss function. The decision theoretic ap-
proach can, for example, be applied to finding the required length of
a posterior probability interval. An additional ingredient is then to
attach weights to the probabilities of obtaining an incorrect and cor-
rect decision, respectively, based on an evaluation of the interval. The
third approach adopts an evidential perspective (Richard, 1997; Roy-
all, 2000; De Santis, 2004, 2007; Schönbrodt & Wagenmakers, 2018;
Stefan et al., 2019). Specifically, the sample size is determined such
that a given probability level is guaranteed to obtain a particular size
of the Bayes factor in favor of the best of a null and alternative hypoth-
esis. The fourth approach is aimed at sample size determination for
inequality constrained hypotheses and their complement hypothesis
under one-way ANOVA models (Klaassen et al., 2019). This research
proposed four approaches to determine the sample size for the eval-
uation of a pair of hypotheses. For Approach 1, the sample size is
determined such that the probability of preferring the wrong hypoth-
esis is acceptably low where the cut-off value for the Bayes factor is 1.
For Approach 2, the sample size is determined such that the proba-
bility of preferring the wrong hypothesis is acceptably low, where the
cut-off value for the Bayes factor is 3. For Approach 3, the sample size
is determined such that the probability of obtaining a Bayes factor in
the interval 1/3 to 3 is acceptably low. For Approach 4, the sample
size is determined such that the median Bayes factor in favor of the
true hypothesis has a minimum size.

In this dissertation, sample size determination for the comparison
of null, informative, and alternative hypotheses, which was built on
the third and fourth approaches, has been introduced. Inputs for
this approach are: a pair of hypotheses, the specification of popula-
tions corresponding to both hypotheses (possibly in the form of effect
sizes), and, BFthresh and η. The first two inputs are analogous to the
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inputs required for the third and fourth approaches. However, our
approach is more versatile because it is applicable in the context of
t-tests, ANOVA, and multiple regression models, and because it can
address, null, informative, complementary, and alternative hypothe-
ses. Our approach differs from existing approaches because a new
criterion for sample size determination is used: the sample size is de-
termined such that the probability that the Bayes factor exceeds an
evidence threshold specified by the user is reached with a probabil-
ity specified by the user if either of a pair of competing informative
hypotheses is true. This threshold is denoted by BFthresh, which rep-
resents a degree of support that is considered convincing by the re-
searcher. The probability is denoted by η, which quantifies the proba-
bility that this support will be obtained. The specification of BFthresh
and η is discussed in Section 5.4. Figure 5.1 shows hypothetical sam-
pling distributions of BF01 under H0 and H1, which is presented to
illustrate the criterion. Note that, the left hand figure displays the
distribution of BF01 obtained after repeatedly sampling a data set of
size N1 from a population corresponding to H0. The right hand fig-
ure displays the distribution of BF10 obtained after repeatedly sam-
pling a data set of size N2 from a population corresponding to H1. In
Figure 5.1a, the vertical line at BF01 =BFthresh indicates the evidence
threshold used, and the shaded area denotes η = P (BF01 > BFthresh)
for sample size N1. In Figure 5.1b, the vertical line at BF01 =BFthresh
indicates the evidence threshold used, and the shaded area denotes
η = P (BF10 > BFthresh) for sample size N2 and effect size under H1.
The require sample size is the maximum value of N1 and N2. Sample
size determination based on these principles is implemented in a new
R package SSDbain that can help applied researchers to calculate the
sample size for their specific situations. SSDbain can be downloaded
from https://github.com/Qianrao-Fu/SSDbain.
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Figure 5.1: The sampling distribution of BF01 under H0 and BF10 un-
der H1. The vertical dashed line represents BFthresh, and the shaded
area denotes the probability η that the Bayes factor exceeds BFthresh.
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5.2 State-of-the-Art of Sample Size
Determination

The development of software for calculating the Bayes factor has in-
creased the popularity of using the Bayes factor as a tool for hypoth-
esis testing. The current software includes BayesFactor 3 (Morey et
al., 2018), bain 4 (Gu et al., 2018), BFpack 5 (Mulder et al., 2019),
and JASP 6 (Love et al., 2019). An a priori sample size calculation
should be performed if one wants to have a sufficient probability of
a Bayes factor of a sufficient size. It should be noted that the Bayes
factors in this dissertation are calculated by using the R package bain
with the consideration that bain can deal with null, unconstrained,
and informative hypotheses in the context of virtually any statistical
model. Of course, if researchers want to use another package to calcu-
late the Bayes factor, such as BayesFactor or BFpack, they can replace
the bain function in the bain package with the corresponding function
in BayesFactor or BFpack, but the approach for sample size determi-
nation remains the same. For example, the R script for sample size
determination for the t-test as implemented in the function SSDttest
from SSDbain contains the following call to bain:

res<-bain(estimate,"mu1=mu2",n=ngroup,Sigma=covlist,

group_parameters=1,joint_parameters = 0,fraction=1),

bf<-res$fit$BF[1],

where res is the bain output object rendering bf, which is the Bayes
factor of interest. Note that, the call to bain contains the estimated
group means, the null hypothesis, the sample sizes, the covariance
matrix of the estimates, one mean per group, no parameters that apply
to each of the groups, and the minimal fraction.

3https://richarddmorey.github.io/BayesFactor/
4https://informative-hypotheses.sites.uu.nl/software/bain/
5https://github.com/jomulder/BFpack
6https://jasp-stats.org/
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If researchers want to use the R package BayesFactor to calculate
the Bayes factor, the above code should be replaced by

bf<-1/ttestBF(x,y,rscale=rscale),

where bf contains the Bayes factor of interest. Note that, the call to
ttestBF as implemented in BayesFactor contains vectors of observa-
tions for the first and second groups and the scale of the prior distri-
bution (Cauchy distribution).

Chapter 2 introduces sample size determination when the Bayesian
t-test or Bayesian Welch’s test is used. If the researchers want to deter-
mine the sample size for the Bayesian t-test and Bayesian Welch’s test,
the function SSDttest can be called:

SSDttest(type,Population_mean,var,BFthresh,eta,

Hypothesis,T,seed)

From this function, we can see that researchers should determine the
type of t-test (type=’equal’ or type=’unequal’), the Cohen’s effect size
d (also the variance for each group if Welch’s t-test is executed), the
required size of Bayes factor BFthresh, the probability that the Bayes
factor exceeds BFthresh, which is denoted by η, the hypotheses of in-
terest, and the number of simulations (a minimum value of 10000
is required). Several sample-size tables for small (d = 0.2), medium
(d = 0.5), and large (d = 0.8) effect sizes are presented in the chapter.
As long as the conditions of the tables match with their cases, one can
use tables to find the appropriate sample size. Otherwise, the function
of SSDttest in the R package SSDbain is recommended to calculate the
sample size.

Chapter 3 introduces sample size determination for Bayesian ANOVA,
Bayesian Welch’s ANOVA, and Bayesian robust ANOVA. Two func-
tions, namely - SSDANOVA and SSDANOVA_robust, in the R package
SSDbain have been created. The former is developed for a depen-
dent variable that is approximately normally distributed within each
group. This function can deal with Bayesian ANOVA (i.e., variances
approximately equal across groups) and Bayesian Welch’s ANOVA (i.e.,
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variances are unequal across groups). This function can be called as
follows.

SSDANOVA(hyp1,hyp2,type,f1,f2,var,BFthresh,eta,T,seed)

From this function, we can see that users need to determine the
competing hypotheses of interest, Bayesian ANOVA or Bayesian Welch’s
ANOVA, Cohen’s effect size f (also the variance for each group if Welch’s
ANOVA is executed), the required size of Bayes factor BFthresh, and the
probability that the Bayes factor exceeds BFthresh, which is denoted
by η. The latter is developed for dependent variables that have non-
normal population distributions within the groups, especially those
that are heavily skewed or include outliers. This function is devel-
oped for Bayesian robust ANOVA, which can be called as follows:

SSDANOVA_robust(hyp1,hyp2,f1,f2,skews,kurts,

var,BFthresh,eta,T,seed)

From this function, we observe that users need to determine the com-
peting hypotheses of interest, Cohen’s effect size f , the variance, skew-
ness and kurtosis for each population, the required size of Bayes fac-
tor BFthresh, and the probability that the Bayes factor exceeds BFthresh,
which is denoted by η.

Sample-size tables for small (f = 0.1), medium (f = 0.25), and
large (f = 0.4) effect sizes are presented. For other cases, this chapter
presents a step-by-step description of how to use these two functions.

Chapter 4 introduces an approach for sample size determination
for Bayesian multiple linear regression, and the corresponding func-
tion SSDRegression. This function can be called as follows.

SSDRegression(Hyp1,Hyp2,k,rho,R_square1,R_square2,T_sim,

BFthresh,eta,seed,standardize,ratio)

Users need to specify the hypotheses of interest, the number of
predictor variables in the hypothesis, the correlation between any two
predictors, the coefficient of determination R2, the required size of
Bayes factor (denoted as BFthresh), the probability that the Bayes factor
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is larger than BFthresh (denoted as η), whether standardized or unstan-
dardized regression coefficients are used, and the ratios among the
regression coefficients. Several tables with sample sizes in the case
of the coefficient of determination R2=0.13 and for different compet-
ing informative hypotheses are provided in the chapter. Moreover,
a function called "SSDRegression" in the R package SSDbain is pro-
vided, making the sample size determination accessible to applied re-
searchers.

5.3 Bayesian Updating and Sample Size
Determination

In this dissertation, a priori sample size determination for null, un-
constrained, informative, and complement hypotheses testing is con-
ducted. Similar to power analysis (Cohen, 1988, 1992), it is also a key
issue to provide an a priori estimate of the effect size in the Bayesian
framework. If the effect size is underestimated, the sample size will
be too high, meaning that resources will be wasted; if the effect size is
overestimated, the sample size will be too low, meaning that a conclu-
sive result cannot be achieved with a high probability. For example,
one needs to calculate the sample size for an effect size of d = 0.5 for
the Bayesian t-test. The required sample size is 104. If the true popu-
lation effect size is smaller (0.3), then a larger sample size of 318 is re-
quired. If the true population effect size is larger (0.7), then a smaller
sample size of 49 is required.

An alternative for sample size determination is Bayesian updating
(Schönbrodt & Wagenmakers, 2018; Stefan et al., 2019; Moerbeek,
2021; Rouder, 2014). If updating is used to evaluate two hypothe-
ses using the Bayes factor, a researcher first has to specify what the
desired support is (e.g., the Bayes factor should be at least 4 in favor
of the best hypothesis) and what the maximum achievable sample size
is (e.g., a researcher has the funds and time to let 120 persons par-
ticipate in an experiment). Subsequently, the researchers collect an
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initial batch of data. For example, in a three group ANOVA one could
start with 10 persons per group, and in a multiple regression with two
predictors with 20 persons. There exist no guidelines for choosing the
initial sample size. The key is to choose it such that the initial re-
sults will not be very unstable. Based on this initial batch the Bayes
factor is computed. If it is larger than the desired support, the data
collection can be stopped; if it is not, additional data are collected and
the Bayes factor is recomputed until the desired support or the max-
imum achievable sample size are reached. This procedure of sample
size determination is attractive because the researchers do not have to
estimate the effect size a priori, and the resources can be reasonably
used.

However, Bayesian updating cannot always be used. If the Bayes
factor cannot reach the desired level of support before the maximum
number of subjects has been reached, the study could produce an in-
conclusive result, which can cause a waste of time and resources for
the researchers. In some studies, a priori sample size determination
possibly followed by Bayesian updating is the better option because a
prior sample size determination may provide some insights into the fi-
nal sample size that can be expected when researchers plan to execute
Bayesian updating. The following examples illustrate this:

1. When the population is very small (e.g., in the case of rare dis-
eases) and a researcher wants to detect an effect size of Cohen’s
f = 0.25 (for a one-way ANOVA) with a probability η = 0.8 that
the Bayes factor is at least 3. The hypotheses of interest are H0:
µ1 = µ2 = µ3 and H1 : µ1 > µ2 > µ3, where µ1 (Rituximab), µ2
(Gemtuzumab), and µ3 (Imatinib mesylate) denote the effects of
three drugs on leukemia. The required sample size can be calcu-
lated using the following R code:

library(SSDbain)

SSDANOVA(hyp1="mu1=mu2=mu3",hyp2="mu1>mu2>mu3",type=

"equal",f1=0,f2=0.25,var=NULL,BFthresh=3,eta=0.8,T=

10000,seed=10)
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The output contains the following information:

The sample size per group is N=71

P(BF01>3|H0)=0.971

P(BF10>3|H1)=0.805

If it is too difficult to obtain such a large sample size for this
rare disease, the researcher can decide not to proceed with this
experiment, or to conduct the study and use a smaller BFthresh
and/or η.

2. When a survey tracks persons for many years, such as 20 years
or even more, Bayesian updating is not feasible, and sample size
determination can provide some insights into the required sam-
ple sizes before the study starts. For example, researchers may
use a survey to study how exercise during middle age affects cog-
nitive health as people age. Consider a researcher who wants to
detect an effect size of Cohen’s d = 0.5 (for a two-sample t-test)
with a probability η = 0.8 that the Bayes factor is at least 3. The
hypotheses of interest are H0: µ1 = µ2 and H1 : µ1 > µ2, where
µ1, and µ2 are the mean scores on a cognitive performance test
in the low and high exercise groups, respectively. The required
sample size can be calculated using the following R code:

library(SSDbain)

SSDttest(type=’equal’,Population_mean=c(0.5,0),var=NULL,

BFthresh=3,eta=0.8,Hypothesis=’one-sided’,T=10000)

The output contains the following information:

The sample size per group is N=104

P(BF01>3|H0)=0.92

P(BF10>3|H1)=0.80
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This tells the researchers that they should choose their initial
sample size such that at the end of the study they have about
100 persons left.

3. When a research plan needs to be submitted to the (medical)
ethical committee, researchers have to argue why they aim for a
certain sample size, or, if Bayesian updating will be used, why
they aim for a certain maximum sample size. Both arguments
can be supported with sample size determination.

5.4 The Specification of BFthresh and η

To determine the required sample size, BFthresh and η need to be speci-
fied. The larger the threshold, the stronger the support for the true hy-
pothesis. Different from the most often used significance level α=0.05
and power 1-β=0.8 in the Neyman Pearson approach, there are no
strict boundaries or necessary thresholds in Bayesian hypothesis test-
ing. What constitutes sufficient evidence depends on the following
three situations. First, the field of research matters. If high-stakes re-
search is conducted, for instance, medical research, a larger BFthresh
may be chosen; if low-stakes research is conducted, for instance, aca-
demic performance research, a smaller BFthresh may be sufficient. Sec-
ond, it matters whether a primary or a secondary outcome measure
is studied. The primary outcome is the variable that is the most rel-
evant to answer the research question, and the secondary outcome is
an additional outcome that is measured to help interpret the results
of the primary outcome. For example, the quality of life and survival
of patients could be chosen as the primary outcomes, whereas changes
in adverse events experienced are chosen as the secondary outcomes.
Third, researchers should consult their peers to gain insights into what
is considered a sufficient threshold for different scenarios in their re-
spective fields. Their responses can be simulated by the "wisdom-of-
the-crowd" paradigm (Lee et al., 2012; Surowiecki, 2004), which im-
plies that the summary of many researchers’ judgments and estimates
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is more accurate than one single researcher’s judgment. In this man-
ner, an inter-subjectively agreed upon BFthresh can be determined.

The probability η refers to the probability that researchers find suf-
ficient support for the best hypothesis. The larger the η, the smaller
the error rate. The judgment on what constitutes a reasonable η is
based on the following arguments. If the consequences of failing to
detect the effect are serious, such as in toxicity testing, one may want
to use a relatively high η. In fundamental studies, researchers may be
interested only in large effects where an error may not cause such seri-
ous consequences. A smaller η may be sufficient to catch large effects
and fewer subjects will be needed. The selection of a proper value de-
pends on norms in the study area. Again, the wisdom-of-the-crowd
paradigm (Lee et al., 2012; Surowiecki, 2004) could be used to reach
inter-subjective agreement among peers.

Table 5.1 contains a numerical illustration of the elaboration in this
section. It is based on an ANOVA with three groups and the hypothe-
ses of interest are H0: µ1 = µ2 = µ3 versus H1: µ1 > µ2 > µ3. The sample
sizes in the table are computed using a Cohen’s effect size f = 0.25.
From this table, we can observe that for high stakes the required sam-
ple size is larger than that for low-stakes, where a higher BFthresh and
η are used for the high-stakes situation to ensure that the conclusion
is reliable. Similarly, the required sample size for a primary outcome
measure is larger than that for a secondary outcome measure, where
a higher BFthresh is used for a primary outcome measure than for a
secondary outcome measure, which is of lesser importance than a pri-
mary outcome measure.

Table 5.1: Sample sizes for four situations with different BFthresh and
η

High-stakes Low-stakes Primary outcome Secondary outcome
BFthresh 10 3 5 2

η 0.9 0.8 0.9 0.9
N 126 71 115 100
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5.5 Informative Hypotheses

Informative hypotheses are formulated based on the assumptions and
expectations of the researcher or the findings and conclusions in the
literature. Informative hypotheses have various advantages over the
standard null and alternative hypotheses:

1. The specific expectations and questions of a researcher can be
expressed by informative hypotheses. For instance, when the
means for different populations, groups, conditions or treatments
are compared, the regression coefficients are compared and the
sign of the regression coefficient is judged. For example, re-
searchers want to study the effects of tea on weight loss, and form
three groups: green tea, black tea, and herbal tea, with the mean
weight loss in these groups denoted by µgreen,µblack, and µherbal,
respectively. They obtain the expectation about the ordering of
the effects of these three types of teas from previous studies. This
expectation can be expressed as H1: µgreen > µblack > µherbal.

2. Evaluation of informative hypotheses can eliminate the multiple
testing problem that occurs when one needs follow-up tests to
unravel an omnibus effect in null hypothesis significance testing.
For example, an increased Type I error rate and the loss of power
that results from adjustments for multiple testing (Maxwell, 2004)
can be avoided. To continue the previous example, testing H0:
µgreen = µblack = µherbal versus Ha: not H0, requires follow-up
tests in the form of pairwise comparisons of means if H0 is re-
jected in favor of Ha. However, if H0 is rejected in favor of H1:
µgreen > µblack > µherbal, the follow-up tests are not needed.

3. While making the effort to specify informative hypotheses, re-
searchers will study the literature, think, and engage in aca-
demic debate. This will force them to carefully consider the hy-
potheses and what can and cannot be concluded when hypothe-
ses are (not) supported. This should result in better hypotheses
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and, after their evaluation, in better additions to the theory in
the research field of interest.

4. According to Chapters 2-4, using an informative hypothesis can
result in a smaller sample size than using an unconstrained hy-
pothesis. To illustrate this, Table 5.2 presents the required sam-
ple size for the null hypothesis versus an alternative hypothesis
and the null versus an inequality hypothesis under a two-sample
t-test, one-way ANOVA, and multiple linear regression models.
For the two-sample t-test, the effect size of Cohen’s d = 0.5 is
used; for one-way ANOVA, the effect size of Cohen’s f = 0.25
is used; for multiple linear regression, the coefficient of deter-
mination R2 = 0.13 is used. The sample sizes in the table are
computed using BFthresh = 3 and η = 0.8. From Table 5.2, it can
be observed that the required sample size is reduced if H0 is not
compared to Ha but to an informative hypothesis Hi .

Table 5.2: Comparison of sample sizes for unconstrained hypothesis
and inequality hypothesis

Competing hypotheses Sample size N

H0: µ1 = µ2 vs
Ha 104

Hi : µ1 > µ2 87

H0: µ1 = µ2 = µ3 vs
Ha 93

Hi : µ1 > µ2 > µ3 71

H0: β1 = β2 = 0 vs
Ha 121

Hi : β1 > 0 & β2 > 0 90

5.6 The Prior Distribution

The prior distribution is a key element of Bayesian hypothesis testing.
It is essential to justify a prior distribution because it has a signif-
icant influence on the resulting Bayes factor. In general, two types
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of prior distribution are distinguished. One is the subjective prior
that is specified based on previous research, relevant empirical data,
or expert knowledge. However, it is challenging to elicit and estab-
lish (Garthwaite, Kadane, & O’Hagan, 2005; Tversky, 1974). In psy-
chological research, prior elicitation is gaining popularity (Bolsinova,
Hoijtink, Vermeulen, & Béguin, 2017; Gronau, Ly, & Wagenmakers,
2020; Sarma & Kay, 2020; Tessler & Goodman, 2019; Stefan, Evans,
& Wagenmakers, 2020). For guidelines on how to elicit a prior dis-
tribution, see Stefan et al. (2020); Azzolina, Berchialla, Gregori, and
Baldi (2021). The example in Gronau et al. (2020) is used to illus-
trate this approach. This example concerns the Bayesian two-sample
t-test. Researchers used experts to elicit the median of the Cohen’s ef-
fect size d of 0.35, and 33% (0.25) and 66% (0.45) percentiles of the
prior distribution for the effect size. Then, they used the MATCH Un-
certainty Elicitation Tool 7, which resulted in a t-distribution with lo-
cation 0.350, scale 0.102, and 3 degrees of freedom. The objective
prior (default prior) is the other type of prior and is based on the data
used for Bayesian hypothesis testing. The commonly used default pri-
ors in the calculation of Bayes factors are Jeffreys-Zellner-Siow priors
(Jeffreys, 1961) and g-priors (Liang, Paulo, Molina, Clyde, & Berger,
2008) in the R package BayesFactor (see Morey et al., 2018), intrin-
sic priors (Berger & Pericchi, 1996, 2004) in the R package BIEMS
(see Mulder et al., 2012), and fractional priors (O’Hagan, 1995) in
the R packages bain (see Gu et al., 2021) and BFpack (see Mulder et
al., 2021). The subjective prior is defined as a subjective opinion of
persons, whereas the objective prior is based on a default prior scale
and does not require input from the user. For the R package bain the
specification of these default priors has been elaborated in Chapters
2, 3, and 4. The advantage of adopting the subjective prior is that it
is the only way that prior knowledge can be brought into the evalua-
tion of hypotheses. But there are also disadvantages of using subjec-
tive priors. It is difficult (and sometimes even impossible) to encode
prior knowledge into the prior distribution, in particular when com-

7http://optics.eee.nottingham.ac.uk/match/uncertainty.php

149

http://optics.eee.nottingham.ac.uk/match/uncertainty.php


5. Discussion

plex multi-parameter models are considered (e.g., hierarchical linear
models, or structural equation models). Objective (default) priors do
not allow for prior knowledge to be brought into the evaluation of
hypotheses. However, these priors have two advantages: they are cali-
brated such that the resulting Bayes factors have good operating char-
acteristics (Hoijtink, 2021) and they are easy to use because their de-
fault nature does not require input from researchers using Bayesian
hypothesis evaluation.

5.7 Sensitivity Analysis

In general, a sensitivity analysis explores whether the Bayes factor is
robust to different prior distributions (Kass & Raftery, 1995; Myung
& Pitt, 1997; Sinharay & Stern, 2002). Specifically, considering a two-
sample t-test, where the data come from Sesame Street data presented
by Stevens (1996, Appendix A), and the null hypothesis H0: µ1 = µ2
and the unconstrained hypothesis Ha are compared, that is, whether
or not the male and female have the same posttest score on numbers
(range 0-54). If the researcher uses the R packages BayesFactor and
bain to calculate the Bayes factor, that is, the Jeffreys-Zellner-Siow
prior and approximate adjusted fractional prior are used, respectively,
the resulting Bayes factors are BF0a = 11.583 and BF0a = 5.378, respec-
tively. From the results, we can see that although the conclusions are
in the same direction (H0 is the preferred hypothesis), the sizes of the
Bayes factor are different to some extent, that is, the Bayes factor is
sensitive to the choice of the prior distributions. However, it is cur-
rently difficult to calculate Bayes factors under a wide range of fam-
ilies of prior distributions. The available software for the calculation
of the Bayes factor is only for some default priors with various scale
parameters.

This dissertation discusses the influence of the prior variance on
the results of Bayes factors, that is, the sensitivity of the Bayes fac-
tor to the choice of the scale of the prior distribution. This can be
illustrated using the default priors in the R package bain. In bain, the
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variance of the prior distribution is computed using a fraction of the
information in the data for each parameter (O’Hagan, 1995; Mulder,
2014). For example, consider a one-sample t-test for which data come
from xi ∼ N (µ,σ2), where µ denotes the population mean, σ2 denotes
the population variance, and H0: µ1 = 0 and Ha: not H0. The prior dis-
tribution is µ ∼N (0, 1

b ×
σ̂2

N ), where σ̂2 denotes the estimated variance,
N is the number of observations, and b = 1/N is the fraction of the
information in the data used to specify the variance of the prior distri-
bution of µ. In SSDbain, a sensitivity analysis is provided by executing
sample size determination for fractions b, 2b, and 3b. The results for
different fractions are provided to illustrate the impact of the scale of
the prior distribution on the sample size.

An interesting feature of Bayesian hypotheses testing is that it is
sensitive to the fraction if the null hypothesis is evaluated, and in-
sensitive if informative hypotheses are evaluated. This will be illus-
trated using an ANOVA model. Consider a one-way ANOVA with
three groups, and researchers want to determine the sample size such
that the probability that the Bayes factor is larger than BFthresh = 3 is
η = 0.8. To explore the influence of prior variances on the required
sample sizes, the fraction on which the prior variances are based is
used to execute a sensitivity analysis. Table 5.3 presents sample sizes
for three different fractions. From Table 5.3, we can see that the sam-
ple size is affected by the value of the fraction if the null hypothesis
H0 is included (see the first two entries), and is invariant to the choice
of the fraction if only inequality hypotheses are considered (see the
bottom entry). In this dissertation, a sensitivity analysis is aimed at
competing hypotheses when the null hypothesis is included. This is
because if both the competing hypotheses are non-null hypotheses,
the results of the Bayes factor are not sensitive to the fraction of in-
formation in the data for each group used to specify prior variance
(Mulder, 2014). If the sample sizes are affected by the scale parame-
ters, the best procedure is to report sample sizes for different fractions,
explain why the chosen fraction results in a specific sample size, and
make appropriate conclusions. For example, in the context of a mul-
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Table 5.3: Sample size determination using different fractions

b = 2/N b = 2× 2/N b = 3× 2/N
H0: µ1 = µ2 = µ3 vs Ha 93 83 77

H0: µ1 = µ2 = µ3 vs H1: µ1 > µ2 > µ3 71 60 52
H1: µ1 > µ2 > µ3 vs Hc 28 28 28

Note: results in this table were obtained using the following calls to
SSDANOVA:
SSDANOVA(hyp1="mu1=mu2=mu3",hyp2="Ha",type="equal",

f1=0,f2=0.25,var=NULL,BFthresh=3,eta=0.80,T=10000,seed=10),

SSDANOVA(hyp1="mu1=mu2=mu3",hyp2="mu1>mu2>mu3",type="equal",

f1=0,f2=0.25,var=NULL,BFthresh=3,eta=0.80,T=10000,seed=10),

SSDANOVA(hyp1="mu1>mu2>mu3",hyp2="Hc",type="equal",f1=0.25,

f2=0.25,var=NULL,BFthresh=3,eta=0.80,T=10000,seed=10).

tiple regression model, researchers want to detect the coefficient of
determination R2 = 0.13 with BFthresh = 3 and η = 0.8. The hypotheses
of interest are H0: β1 = β2 = β3 = 0 and H1: β1 > 0 & β2 > 0 & β3 > 0.
After using the function SSDRegression from the SSDbain package
the results displayed in Table 5.4 are obtained.

The required sample sizes are 100 for the minimum fraction b =
3/N , 71 for the larger fraction 2b, and 66 for the larger fraction 3b.
From the results we can see that P (BF01 > 3|H0) and P (BF10 > 3|H1) are
becoming more similar if the fraction increases (i.e., if the prior vari-
ance decreases). As a default, it is recommended to use a prior vari-
ance based on the minimum fraction b = 3/N , as this will present the
largest prior variance, thus providing the largest support for H0. For
example, when the minimum fraction b = 3/N is used, the probability
P (BF01 > 3|H0)=0.964, and the probability P (BF10 > 3|H1)=0.802 is ob-
tained. It is obvious that it is preferable to support the null hypothesis.
In an era of growing awareness of publication bias, sloppy science,
and the irreproducibility of research findings, researchers should be
conservative, meaning that convincing evidence is needed before an
alternative hypothesis is considered to be superior to H0. However, it
is up to the researchers when using bain to decide if they agree with
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this preference. If researchers prefer similar error probabilities for
both competing hypotheses, they can use a larger fraction. For exam-
ple, in Table 5.4, when fraction 3b is used, the probability p0 is 0.811
and the probability p1 is 0.833.

Table 5.4: Sample sizes and corresponding probabilities that the Bayes
factor is larger than 3 when H0 is true (p0) or when H1 is true (p1) for
different fractions

b = 3/N b = 2× 3/N b = 3× 3/N
p0 0.964 0.879 0.811
N 100 71 66
p1 0.802 0.802 0.833

Note: results in this table were obtained using the following
calls to SSDRegression:
SSDRegression(Hyp1=’beta1=beta2=beta3=0’,

Hyp2=’beta1>0&beta2>0&beta3>0’,

k=3,rho=matrix(c(1,0,0,0,1,0,0,0,1),nrow=3),

R_square1=0,R_square2=0.13,

T_sim=10000,BFthresh=3,eta=0.8,seed=10,

standardize=FALSE,ratio=c(1,1,1)).

5.8 A Comparison of the Required Sample
Sizes for Null Hypothesis Significance
Testing and Null Hypothesis Bayesian
Testing

In null hypothesis significance testing, an a priori power analysis has
become an important step in the study design when an inferential sta-
tistical test (e.g., t-test, ANOVA, regression, etc.) is conducted. The
sample size can be calculated for an experiment to detect a given ef-
fect size based on the desired Type I error rate α and Type II error rate
β (that is, the Type I error rate and Type II error rate are controlled).

153



5. Discussion

The Type I error rate and Type II error rate are the probabilities of
incorrect decisions if data are repeatedly sampled from the null and
alternative populations, respectively, and they are determined irre-
spective of the observed data. In Bayesian hypothesis testing, what is
controlled are the Bayesian error probabilities, that is, the posterior
model probabilities (Hoijtink, Mulder, et al., 2019). Posterior model
probabilities are the probabilities that the hypothesis at hand is the
best hypothesis from the set of hypotheses under consideration given
the observed data, that is, posterior model probabilities do not con-
sider what happens if data are repeatedly sampled from populations
corresponding to the null and alternative populations. Sample size de-
termination as discussed in this dissertation is not based on posterior
model probabilities but on the closely related Bayes factor. Table 5.5
contains an illustration of the sample sizes required for null hypothe-
sis significance testing (all with α = .05, β = .20, and a medium effect
size) and Bayesian hypothesis testing (all with BFthresh = 3, η = 0.8, and
a medium effect size. The first two rows concern the t-test for which
J = 1 and Cohen’s d = .5. As can be seen, the sample sizes required
for null hypothesis Bayesian testing are larger than those for null hy-
pothesis significance testing, but the differences become smaller as b
becomes larger. However, as can be seen in the third row, if Ha is
replaced by an informative one-sided alternative, the required sam-
ple sizes become substantially smaller. The second set of three rows
concern an ANOVA for which J = 2 and Cohen’s effect size f = 0.25.
The same can be observed for the t-test, although the difference in
required sample sizes between the classical and Bayesian approach
becomes smaller. Finally, the last three lines concern a multiple re-
gression with J = 3 and the coefficient of determination R2 = 0.13,
which corresponds to Cohen’s effect size f 2 = 0.15. Again the same
can be observed, although now the required sample sizes may even be
smaller for the Bayesian than for the classical approach.

If researchers do not have enough resources, the required sam-
ple size can be adjusted by adding more information to the hypoth-
esis (e.g., by replacing Ha by an informative hypothesis), changing
the fraction, changing BFthresh, or changing η. At least in Table 5.5,
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Table 5.5: A comparison of the required sample sizes for null hypoth-
esis significance testing, and Bayesian hypothesis testing.

Fractions for prior distributions b = J/N b = 2J/N b = 3J/N

H0: µ1 = µ2 vs Ha
Classical 64
Bayesian 104 96 92

H0: µ1 = µ2 vs H1: µ1 > µ2 Bayesian 87 79 74

H0: µ1 = µ2 = µ3 vs Ha
Classical 53
Bayesian 93 83 77

H0: µ1 = µ2 = µ3 vs H1: µ1 > µ2 > µ3 Bayesian 71 60 52

H0: β1 = β2 = β3 = 0 vs Ha
Classical 77
Bayesian 148 119 104

H0: β1 = β2 = β3 = 0 vs H1: β1 > 0 & β2 > 0 & β3 > 0 Bayesian 100 71 66

the sample sizes required for the Bayesian approach seem to be larger
than those for the classical approach. This is caused by the use of dif-
ferent criteria (controlling the Bayesian error probabilities) from that
in the classical approach (controlling the Type I and Type II errors).
The benefit is that Bayesian (informative) hypothesis testing provides
a refreshing look at hypothesis evaluation. First, the Bayes factor is not
biased against the null hypothesis like the p-value (see Wagenmakers,
2007, for example). If anything, the Bayes factor is less inclined to re-
ject the null hypothesis, which seems desirable because the replication
crisis showed that many effects that have been found cannot be repro-
duced. Furthermore, the Bayes factor does not render a dichotomous
decision, but quantifies the degree of support for a pair of hypotheses.
Cut-off values like "the .05" can be avoided, which is also desirable
because such cut-off values are at the root of phenomena such as pub-
lication bias (Ioannidis, 2005; Simmons et al., 2011; Van Assen et al.,
2014) and questionable research practices (Fanelli, 2009; John et al.,
2012; Masicampo & Lalande, 2012; Wicherts et al., 2016). Finally,
Bayesian hypothesis testing can provide evidence not only against but
also in favor of the null hypothesis.
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5.9 Conclusion

The dissertation discusses the required sample size when the Bayes
factor is chosen for (informative) hypothesis testing. An R package
called SSDbain is developed to help researchers calculate the required
sample size. In addition, several sample-size tables have been pre-
sented in the dissertation. By means of these tables, some properties
of such a hypothesis testing strategy are explored. However, there are
still some limitations to this dissertation. First, when data are gener-
ated through Monte Carlo simulation for the purpose of sample size
determination, assumptions were made to simplify the computation.
For example, the differences between the means in an ANOVA (Chap-
ter 3), or the ratios among the regression coefficients (Chapter 4) are
equally spaced; and the samples sizes per group are equal (Chapter
2 and Chapter 3). Second, the developed R package SSDbain is only
available for some commonly used models (t-test, one-way ANOVA,
and multiple linear regression) and corresponding hypotheses. Re-
search on other informative hypotheses, such as about equality con-
straints, and range-constrained hypothesis is still lacking. Other mod-
els, such as correlations, two-way ANOVA, generalized linear mod-
els and structural equation models, are lacking. Furthermore, with
the increasing use of Bayesian informative hypothesis testing, addi-
tional sample size determination should be conducted. This disserta-
tion focuses only on three common models: t-test, one-way ANOVA,
and multiple linear regression. Extensions to more complex models
such as two-way ANOVA, ANCOVA, generalized linear models, Struc-
tural Equation Models, multilevel models for clustered and longitudi-
nal data, and logistic regression models will be our future work. Fi-
nally, in this dissertation sample size determination is based on the
Bayes factor calculated by using the approximate adjusted fractional
prior (Gu et al., 2018). Sample size determination for Bayes factors
based on other subjective or objective/default prior distributions, is a
research area that requires further attention.
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In summary, this dissertation developed the R package SSDbain 8

(Fu, Hoijtink, & Moerbeek, 2021; Fu, Moerbeek, & Hoijtink, 2021; Fu,
2021) for sample size determination for Bayesian informative hypoth-
esis testing, which was previously lacking. SSDbain is available for
the common statistical models including a two-sample t-test, one-way
ANOVA, and multiple linear regression. Sample size tables for the
"standard scenarios" are provided in the dissertation. If these scenar-
ios of the tables do not match with those of the user, he or she can
use the R package SSDbain to calculate the sample size. The SSD-
bain package can be a useful tool that can help researchers plan their
experiments. The functions for sample size determination are easy
to use and detailed help files can help applied researchers use these
functions easily without learning extensive programming knowledge.
Even though the SSDbain package currently deals only with t-tests,
ANOVA, and regression, it can be extended to other models because
both the simulation results and the package’s source code are publicly
accessible. With this dissertation, I hope to provide an easy-to-follow
introduction to SSDbain and to inspire more researchers to employ
SSDbain as a useful tool for planning studies that aim to evaluate (in-
formative) hypotheses.

8https://github.com/Qianrao-Fu/SSDbain
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Summary

Bayesian hypothesis testing via Bayes factors allows for the compari-
son of multiple theories for general statistical models. In recent years,
Bayes factors have been widely used for informative hypotheses, be-
cause they can evaluate the informative hypotheses directly. An a pri-
ori sample size should be planned if researchers want to obtain a Bayes
factor of sufficient size. In this dissertation, I proposed the principle
of sample size determination for informative hypotheses for a two-
sample t-test, one-way ANOVA, and multiple linear regression mod-
els. An R package SSDbain was created to help applied researchers to
plan their sample size before the study.

Chapter 2 discussed sample size determination for the Bayesian
t-test and Bayesian Welch’s test. A function SSDttest has been de-
veloped, and several sample-size tables for Cohen’s small (d = 0.2),
medium (d = 0.5), and large (d = 0.8) effect sizes were provided. If
the tables cannot match the researchers’ condition, they can call the
function of SSDttest in the R package SSDbain to calculate the sample
size.

Chapter 3 presented sample size determination for Bayesian ANOVA,
Bayesian Welch’s ANOVA, and Bayesian robust ANOVA. Two func-
tions, namely SSDANOVA and SSDANOVA_robust have been devel-
oped. Sample-size tables for Cohen’s small (f = 0.1), medium (f =
0.25), and large (f = 0.4) effect sizes are provided. For other cases, this
chapter presents a step-by-step description of how to use these two
functions.

Chapter 4 studied sample size determination for Bayesian multiple
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Summary

linear regression. A function SSDRegression has been developed. Sev-
eral tables with sample sizes in the case the coefficient of determina-
tion R2=0.13 are provided. For other cases, the function SSDRegres-
sion in the R package SSDbain can be called, making the sample size
determination accessible to applied researchers.

Chapter 5 gave a general discussion.
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Bayesiaanse hypothesetoetsing via Bayes-factoren maakt de vergelijk-
ing van meerdere theorieën voor algemene statistische modellen mo-
gelijk. De laatste jaren worden Bayes-factoren veel gebruikt voor in-
formatieve hypothesen, omdat zij de informatieve hypothesen direct
kunnen evalueren. Een a priori steekproefgrootte moet worden gep-
land als onderzoekers een Bayes-factor van voldoende grootte willen
verkrijgen. In dit proefschrift hebben we het principe voorgesteld van
het bepalen van de steekproefgrootte voor informatieve hypotheses
voor two-sample t-test, one-way ANOVA, en meervoudige lineaire re-
gressie modellen. Een R-pakket SSDbain werd gemaakt om de toegepa-
ste onderzoekers te helpen bij het plannen van hun steekproefgrootte
vóór het experiment.

Hoofdstuk 2 besprak de bepaling van de steekproefgrootte voor
Bayesiaanse t-test en Bayesiaanse Welch’s test. Er werd een functie SS-
Dttest ontwikkeld, verschillende tabellen voor de steekproefgrootte
voor kleine (d = 0.2), middelgrote (d = 0.5), en grote (d = 0.8) effect-
groottes van Cohen werden verstrekt. Als de tabellen niet voldoen
aan de voorwaarde van de onderzoekers, kunnen ze de functie van
SSDbain in het pakket SSDbain aanroepen om de steekproefgrootte te
berekenen.

Hoofdstuk 3 presenteerde de bepaling van de steekproefgrootte
voor Bayesiaanse ANOVA, Bayesiaanse Welch’s ANOVA, en Bayesi-
aanse robuuste ANOVA. Twee functies, namelijk - SSDANOVA en SS-
DANOVA_robust zijn ontwikkeld. Sample-size tabellen voor Cohen’s
kleine (f = 0.1), middelgrote (f = 0.25), en grote (f = 0.4) effect sizes
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worden gegeven. Voor andere gevallen geeft dit hoofdstuk een staps-
gewijze beschrijving van het gebruik van deze twee functies.

Hoofdstuk 4 bestudeerde de bepaling van de steekproefgrootte voor
Bayesiaanse meervoudige lineaire regressie. Er is een functie SSDRegres-
sion ontwikkeld. Verschillende tabellen met steekproefgroottes in het
geval dat de determinatiecoëfficiënt R2=0.13 worden gegeven. Voor
andere gevallen kan de functie SSDRegression in het R-pakket SSD-
bainR worden aangeroepen, waardoor de bepaling van de steekproef-
grootte toegankelijk wordt voor de toegepaste onderzoekers.

In hoofdstuk 5 werd een algemene discussie gegeven.
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