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The Bayes Factor

The Bayes factor (Jeffreys, 1961, Kass and Raftery, 1995) is
the ratio of two marginal likelihoods. The simplest example:

BF12 =
m1

m2
=

∫
µ f (x | µ, σ2 = 1)h(µ | H1)dµ∫
µ f (x | µ, σ2 = 1)h(µ | H2)dµ

,

where,

f (x | µ, σ2 = 1) =
N∏

i=1

− 1√
2π

exp
1
2

(xi − µ)2,

with H1 : µ = 0 and H2 : µ 6= 0 leading to

h(µ | H1) = Iµ=0,

and
h(µ | H2) ∼ N (0, τ2)



The Bayes Factor

The choice of the prior distribution is crucial when using the
Bayes factor for hypothesis evaluation!

The "normal" could have been a "t" or a "Cauchy". All these
choices appear in the literature.

Great "unanswered" research question: which choice is good,
when, and why.



The Bayes Factor

Note that m1 is simply

m1 = f (x | µ = 0, σ2 = 1)

Note that a simple estimator to compute m2 is

m2 ≈
1
Q

Q∑
q=1

f (x | µq, σ
2 = 1),

where µq for q = 1, ...,Q is sampled from h(µ | H2) ∼ N (0, τ2)



The Bayes Factor

Note that, the simple estimator is very inadequate (Kass and
Raftery, 1995). Much better options to compute the Bayes
factor are presented in Chib (1995) and Chib and Jeliazkov
(2001). In fact, except in this introduction, never use the simple
estimator.



The Bayes Factor

Using R code in which the computation of BF12 is implemented
the following will be illustrated:

1. That BF12 is largest if x = 0 and decreasing for x →∞
2. That the size of BF12 depends on the sample size
3. That BF12 increases if the prior standard deviation is

increased (Lindley-Bartlett paradox), that is, always choose
a meaningful prior variance and never a vague prior



The One Group Approximate Adjusted Fractional
Bayes Factor

1. Based on the work of Gu, Mulder, and Hoijtink (2018),
Mulder (2014), O’Hagan (1995).

2. First, the one group situation is illustrated. The multiple
group situation (Hoijtink, Gu, and Mulder, 2018, based on
De Santis and Spezzaferri, 2001) will be illustrated next.



The One Group Approximate Adjusted Fractional
Bayes Factor

Consider the following multiple regression model with two
predictors that are measured on the same scale:

yi = α0 + α1x1i + α2x2i + εi with εi ∼ N (0, σ2)

with density of the data

f (y | α, σ2,x) =
N∏

i=1

1√
2πσ2

exp−1
2

(yi − α0 − α1x1i − α2x2i)
2

σ2

Values of α, σ2 supported by the data lead to a large value for
f (.). Values of α, σ2 not supported by the data lead to a small
value for f (.).



The One Group Approximate Adjusted Fractional
Bayes Factor

Using the maximum likelihood estimates α̂1 and α̂2 and the
corresponding covariance matrix Σα1,α2 and a standard
uninformative prior h(α1, α2) = 1 for α1, α2 a normal
approximation of the posterior distribution of α1, α2 is

gu(α1, α2 | y ,x) ≈ N (α1, α2 | α̂1, α̂2,Σα1,α2)× 1 =

N (α1, α2 | α̂1, α̂2,Σα1,α2)1−b ×N (α1, α2 | α̂1, α̂2,Σα1,α2)b × 1

Note that b denotes a fraction of the density of the data used
to specify a prior distribution (inspired by O’Hagan, 1995).



The One Group Approximate Adjusted Fractional
Bayes Factor

The size of b is inspired by the concept of minimal training
samples. Here b = J/N where J denotes the number of
independent constraints in the hypotheses under consideration.

Other choices are conceivable. Therefore, it is always
recommended to do a sensitivity analysis (vary J) when
hypotheses are formulated using equality constraints.

The fractional prior distribution then is:

hu(α1, α2 | [y ,x ]b) = N (α1, α2 | α̂1, α̂2,Σα1,α2)b × 1 =

N (α1, α2 | α̂1, α̂2,
Σα1,α2

b
)



The One Group Approximate Adjusted Fractional
Bayes Factor

The prior distribution has to be adjusted such that its means
are located on the boundaries of the hypotheses under
consideration. Otherwise the resulting Bayes factor will be
inconsistent.

For the hypotheses used in this example this renders:

hu(α1, α2 | [y ,x ]b) = N (α1, α2 | 0,0,
Σα1,α2

b
)



The One Group Approximate Adjusted Fractional
Bayes Factor

Note that,

hi(α1, α2 | [y ,x ]b) =
hu(α1, α2 | [y ,x ]b)Iα1,α2∈Hi∫

α1,α2
hu(α1, α2 | [y ,x ]b)Iα1,α2∈Hi dα1, α2

=
hu()

ci

and

gi(α1, α2 | y ,x) =
f (y | α, σ2,x)gi(α1, α2 | y ,x)∫

α1,α2
gu(α1, α2 | y ,x)Iα1,α2∈Hi dα1, α2

=
gu()

fi



The One Group Approximate Adjusted Fractional
Bayes Factor

Note that,

gi(α1, α2 | y ,x) =
f (y | α, σ2,x)hi(α1, α2 | [y ,x ]b)

mi

and

gu(α1, α2 | y ,x) =
f (y | α, σ2,x)hu(α1, α2 | [y ,x ]b)

mu



The One Group Approximate Adjusted Fractional
Bayes Factor

Therefore
BFiu =

mi

mu
≈

f (y | α, σ2,x)hi(α1, α2 | [y ,x ]b)

gi(α1, α2 | y ,x)
/

f (y | α, σ2,x)hu(α1, α2 | [y ,x ]b)

gu(α1, α2 | y ,x)
=

1/ci × hu(α1, α2 | [y ,x ]b)

1/fi × gu(α1, α2 | y ,x)
/

hu(α1, α2 | [y ,x ]b)

gu(α1, α2 | y ,x)
=

fi
ci
,

Note the ≈. It is caused by the adjusted mean in the prior
distribution. Without this adjustement it would have been =.



The One Group Approximate Adjusted Fractional
Bayes Factor

Consider the hypotheses:

H1 : α1 ≈ α2, that is, |α1 − α2| < .1

H2 : α1 > 0, α2 > 0

H3 : α1, α2

These hypotheses can be "translated" into prior distributions,
posterior distributions can be superimposed and Bayes factors
can "visually" be computed.



The One Group Approximate Adjusted Fractional
Bayes Factor
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The One Group Approximate Adjusted Fractional
Bayes Factor

Note that, the computation of ci and fi is based on sampling
from the posterior and prior distributions (the proportions of
parameter vectors sampled in agreement with Hi ).

This can be done easily and accurately with the algorithm
presented in Gu, Hoijtink, Mulder, and Rosseel (2019).



The Multiple Group Approximate Adjusted Fractional
Bayes Factor

Consider a "Students t-test" setup:

yig = µg + εi for g = 1,2, εi ∼ N (0, σ2),

with εi ∼ N (0, σ2) and sample sizes N1 and N2.

The hypotheses of interest are:

H1 : µ1 = µ2

and

Hu : µ1 6= µ2



The Multiple Group Approximate Adjusted Fractional
Bayes Factor

Assuming that σ̂2 = 1, the normal approximation of the
posterior distribution of µ1 and µ2 is:

gu(µ1, µ2 | y) ≈ N
([

µ̂1
µ̂2

]
,

[
1/N1 0

0 1/N2

])
,



The Multiple Group Approximate Adjusted Fractional
Bayes Factor

The "fractional" prior corresponding to the posterior is:

hu(µ1, µ2 | [y ]b) = N
([

0
0

]
,

[
1/b × 1/N1 0

0 1/b × 1/N2

])
,



The Multiple Group Approximate Adjusted Fractional
Bayes Factor

Using δ = µ1 − µ2 and b = 1/N = 1/(N1 + N2)) the BF reduces
to the following Savage-Dickey density ratio

BF1u =
f1
c1

=
gu(δ = 0 | y)

hu(δ = 0 | [y ]b)
=

N (0 | δ̂,N−1
1 + N−1

2 )

N (0 | 0, (N1 + N2)(N−1
1 + N−1

2 ))
.



The Multiple Group Approximate Adjusted Fractional
Bayes Factor

Lets us first of all consider the situation in which N1 and N2 go
to∞ with the same rate, that is, let Ng = agn, for some positive
constant ag and let n→∞.

If δ̂ = 0, then

f1 = N (0 | 0,N−1
1 + N−1

2 )→∞,

and

c1 = N (0 | 0, (N1+N2)(N−1
1 +N−1

2 ) = N (0 | 0, (a1+a2)(a−1
1 +a−1

2 ),

which is a constant independent of n.

Consequently, BF1u →∞ if n→∞ which is consistent.



The Multiple Group Approximate Adjusted Fractional
Bayes Factor

If δ̂ 6= 0,
f1 = N (0 | δ̂,N−1

1 + N−1
2 )→ 0,

if n→∞

and c1 remains a constant

This implies that BF1u → 0 if n→∞ which is consistent.



The Multiple Group Approximate Adjusted Fractional
Bayes Factor

A numerical illustration:

In the table for H1, x̄1 = (0,0) and for Hu, x̄2 = (−.35, .35)

(M)BF
x̄1 x̄2

N1 N2 b Σ̂11/b Σ̂22/b BF1u BF1u
10 10 .05 2 2 4.47 1.31
25 25 .02 2 2 7.07 .33
50 50 .01 2 2 10.00 .02

100 100 .005 2 2 14.14 .00



The Multiple Group Approximate Adjusted Fractional
Bayes Factor

Now if we fix N1 and let N2 →∞, then if n→∞

f1 = N (0 | δ̂,N−1
1 + N−1

2 ) = N (0 | δ̂,N−1
1 ),

which is a constant, and

c1 = N (0 | 0, (N1 + N2)(N−1
1 + N−1

2 ) = N (0 | 0,∞)→ 0,

Consequently, in the limit BF1u →∞ also if Hu is true, which is
inconsistent behavior.



The Multiple Group Approximate Adjusted Fractional
Bayes Factor

A numerical illustration:

In the table for H1, x̄1 = (0,0) and for Hu, x̄2 = (−.35, .35)

BF
x̄1 x̄2

N1 N2 b Σ̂11/b Σ̂22/b BF1u BF1u
10 10 .05 2 2 4.47 1.31
10 25 .029 3.5 1.4 5.92 1.03
10 50 .017 6.0 1.2 7.74 1.01
10 100 .009 11 1.13 10.48 1.13
10 200 .005 21 1.05 14.94 1.41
10 1000 .001 101 1.01 31.78 2.81



The Multiple Group Approximate Adjusted Fractional
Bayes Factor

This inconsistent behavior can be avoided if the fraction of
information b used to specify the prior distribution is group
specific:

hu(µ1, µ2 | [y ]b) ≈ N
([

0
0

]
,

[
1/b1 × 1/N1 0

0 1/b2 × 1/N2

])
=

N
([

0
0

]
,

[
2 0
0 2

])
,

where b1 = 1
2

1
N1

and b2 = 1
2

1
N2

.



The Multiple Group Approximate Adjusted Fractional
Bayes Factor

The MGAAFBF (what’s in a name) based on this prior is:

MBF1u =
f1
c1

=
gu(δ = 0 | y)

hu(δ = 0 | [y ]b)
=
N (0 | δ̂,N−1

1 + N−1
2 )

N (0 | 0,4)
=



The Multiple Group Approximate Adjusted Fractional
Bayes Factor

If δ̂ = 0 and n→∞, then f1 →∞ and c1 is constant. This
implies that MBF1u →∞.

If δ̂ 6= 0 and n→∞, then f1 → 0 and c1 is constant. This
implies that MBF1u → 0.

Stated otherwise, for n→∞ MBF1u is consistent.



The Multiple Group Approximate Adjusted Fractional
Bayes Factor

If N2 →∞ while N1 is fixed:

Then if δ̂ = 0, in the limit

MBF1u =
f1
c1

=
N (0 | 0,N−1

1 + N−1
2 )

N (0 | 0,4)
=
N (0 | 0,N−1

1 )

N (0 | 0,4)

Although for N2 →∞ MBF1u does not approach∞ (but for
N1 ≥ 1 is has a value larger than 1), this is reasonable behavior
and the inconsistent behavior of the BF is avoided.



The Multiple Group Approximate Adjusted Fractional
Bayes Factor

If N2 →∞ while N1 is fixed:

Then if δ̂ 6= 0 in the limit

MBF1u =
f1
c1

=
N (0 | δ̂,N−1

1 + N−1
2 )

N (0 | 0,4)
=
N (0 | δ̂,N−1

1 )

N (0 | 0,4)

If, for example, N1 = 25 and δ̂ = .1, MBF1u = 8.8, that is, H1 is
supported. This is reasonable, because both the sample size of
Group 1 and the effect size are small and therefore the effect is
not convincingly different from zero.

If both are larger, for example, N1 = 49 and δ̂ = .5,
MBF1u = .03, that is, Hu is supported.



The Multiple Group Approximate Adjusted Fractional
Bayes Factor

A numerical illustration:

In the table for H1, x̄1 = (0,0) and for Hu, x̄2 = (−.35, .35)

MBF
x̄1 x̄2

N1 N2 b1 b2 Σ̂11/b1 Σ̂22/b2 MBF1u MBF1u
10 10 .05 .05 2 2 4.47 1.31
10 25 .05 .02 2 2 5.34 .93
10 50 .05 .01 2 2 5.77 .75
10 100 .05 .005 2 2 6.03 .65
10 200 .05 .0025 2 2 6.17 .60
10 1000 .05 .0005 2 2 6.29 .56



Computing the Bayes Factor from Data with Missing
Values

The data contain four variables from the sesamesim data set:
funumb, prenumb, postnumb, and peabody.

Using multiple regression funumb will be predicted from
prenumb and postnumb.

Note that four variables will be used for multiple imputation,
while the statistical model used contains only three.



Computing the Bayes Factor from Data with Missing
Values

The regression model is:

funumbi = α0 + α1prenumbi1 + α2postnumbi2 + ei ,

The goal is to compute the Bayes factor BF1u and BF2u with:

H1 : α1 = 0 & α2 = 0,

H2 : α1 > 0 & α2 > 0

and,
Hu : α1, α2

in the presence of missing values.



Computing the Bayes Factor from Data with Missing
Values

The imputation model is a multivariate normal distribution for
funumb, prenumb, postnumb, and peabody.



Computing the Bayes Factor from Data with Missing
Values

# load the bain and mice packages - create dataset
library(bain)
library(mice)

set.seed(100)

misdat <- cbind(sesamesim$prenumb,sesamesim$postnumb,
sesamesim$funumb,sesamesim$peabody)

colnames(misdat) <- c("prenumb","postnumb",
"funumb","peabody")

misdat <- as.data.frame(misdat)



Computing the Bayes Factor from Data with Missing
Values

# create missing data
pmis <- .80
for (i in 1:240){

uni<-runif(1)
if (pmis < uni) {

misdat$funumb[i]<-NA
}
uni<-runif(1)
if (pmis < uni) {

misdat$prenumb[i]<-NA
misdat$postnumb[i]<-NA

}
uni<-runif(1)
if (pmis < uni) {

misdat$peabody[i]<-NA
}

}



Computing the Bayes Factor from Data with Missing
Values

# print data summaries - note the missing values (NAs)
summary(misdat)

prenumb postnumb funumb peabody
Min. : 1.00 Min. : 0.00 Min. : 0.00 Min. : 5.00
Mean :21.22 Mean :29.55 Mean :34.17 Mean :47.79
Max. :52.00 Max. :63.00 Max. :91.00 Max. :92.00
NA’s :40 NA’s :40 NA’s :50 NA’s :50



Computing the Bayes Factor from Data with Missing
Values

# use mice to create 1000 imputed data matrices
M <- 1000
out <- mice(data = misdat, m = M, seed=999,

meth=c("norm","norm","norm","norm"),
diagnostics = FALSE, printFlag = FALSE)



Computing the Bayes Factor from Data with Missing
Values

# create vectors in which 1000 fits and complexities
# can be stored for each # of two hypotheses
fits1 <- vector("numeric",1000)
compls1 <- vector("numeric",1000)
fits2 <- vector("numeric",1000)
compls2 <- vector("numeric",1000)



Computing the Bayes Factor from Data with Missing
Values

# analyse each imputed data set with lm and bain,
# store the resulting fits and compls
for(i in 1:M) {
regr <- lm(funumb~prenumb+postnumb,complete(out,i))
result <- bain(regr,"prenumb=0 & postnumb=0;

prenumb>0 & postnumb>0")
fits1[i]<-result$fit$Fit[1]
compls1[i]<-result$fit$Com[1]
fits2[i]<-result$fit$Fit[2]
compls2[i]<-result$fit$Com[2]
}



Computing the Bayes Factor from Data with Missing
Values

# compute the Bayes factor using 1000 fits and compls.
# See Equation 23 in Hoijtink, Gu, Mulder,
# and Rosseel (2019).

BF1u <- sum(fits1)/sum(compls1)
BF2u <- sum(fits2)/sum(compls2)

print(round(c(BF1u,BF2u),digits=2))
print(round(c(sum(fits1)/1000,

sum(compls1)/1000),digits=2))
print(round(c(sum(fits2)/1000,

sum(compls2)/1000),digits=2))



Computing the Bayes Factor from Data with Missing
Values

> print(round(c(BF1u,BF2u),digits=2))
[1] 0.00 1.13
> print(round(c(sum(fits1)/1000,sum(compls1)/1000),digits=2))
[1] 0.00 0.11
> print(round(c(sum(fits2)/1000,sum(compls2)/1000),digits=2))
[1] 0.15 0.13
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