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Abstract

Learning about hypothesis evaluation using the Bayes factor could enhance psychological

research. In contrast to null-hypothesis significance testing: it renders the evidence in favor

of each of the hypotheses under consideration (it can be used to quantify support for the

null-hypothesis) instead of a dichotomous reject/do-not-reject decision; it can

straightforwardly be used for the evaluation of multiple hypotheses without having to

bother about the proper manner to account for multiple testing; and, it allows continuous

re-evaluation of hypotheses after additional data have been collected (Bayesian updating).

This tutorial addresses researchers considering to evaluate their hypotheses by means

of the Bayes factor. The focus is completely applied and each topic discussed is illustrated

using Bayes factors for the evaluation of hypotheses in the context of an ANOVA model,

obtained using the R package bain. Readers can execute all the analyses presented while

reading this tutorial if they download bain and the R-codes used. It will be elaborated in a

completely non-technical manner: what the Bayes factor is, how it can be obtained, how

Bayes factors should be interpreted, and what can be done with Bayes factors. After

reading this tutorial and executing the associated code, researchers will be able to use their

own data for the evaluation of hypotheses by means of the Bayes factor, not only in the

context of ANOVA models, but also in the context of other statistical models.

Keywords: bain, Bayes Factor, Bayesian Error Probabilities, Informative Hypotheses,

Posterior Probabilities.
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A Tutorial on Testing Hypotheses Using the Bayes Factor

Introduction

Null hypothesis significance testing (NHST) is the dominant tool in psychological

research. It is used to test whether the null-hypothesis of no effect can be rejected based on

the observed data. This is done by comparing the p-value to a pre-specified significance

level. The popularity of NHST is surprising because in the last decades it has been heavily

criticised. For example, Cohen (1994) and Royal (1997) argue that the null-hypothesis is so

precise that it may never be true. However, Wainer (1999) provides examples where a

precise null-hypothesis provides a convincing description of the population of interest and

Jones and Tukey (2000) present "a sensible formulation of the significance test". The

bottom line is that the null hypothesis should not unthinkingly be used (as it often is), it

should only be used if it provides a plausible description of the population of interest.

Furthermore, Berger and Delampady (1987), Raftery (1995), Harlow, Mulaik, and Steiger,

(1997/2016), Wagenmakers (2007), and Masson (2011), criticized various aspects of (the

use of) NHST. This culminated in the recent attention for publication bias (Ioannides,

2005; Simons, Nelson, and Simonsohn, 2011; van Assen et al, 2014), and questionable

research practices (Fanelli, 2009; John, Loewenstein, and Prelec, 2012; Masicampo and

Lalande, 2012; Wicherts et al., 2016), which are all linked to the use of a pre-specified

significance level of, usually, .05.

Publication bias is the phenomenon that researchers whose research renders p < .05

while H0 is true (that is, a Type I error), will usually have their paper published, while

researchers who obtain p > .05 and do not reject the null-hypothesis will usually not have

their paper published. This is also known as the file-drawer problem: a fluke result gets

published while all the research showing that the result is false remains in the file-drawer.

Questionable research practices are the phenomenon that researchers use improper

methods to analyse their data with the goal to obtain a p-value smaller than .05. Examples

by which this can be achieved is: selective removal of outliers; testing six different
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dependent variables and reporting only the significant results (without mentioning the

non-significant results nor applying a correction for capitalization on chance); post-hoc

(after collecting and looking at the data) selection of covariates, or collecting extra data

because the available data rendered a p-value that was only slightly larger than .05.

The consequences of publication bias and questionable research practices are shown

in the OSF "reproducibility project psychology" (https://osf.io/ezcuj/) where only

about 30% of 100 replication studies confirmed the results obtained by the original study

(Open Science Collaboration, 2015). An alternative for the use of threshold values (like an

alpha level of .05) is preregistration of research, as argued, for example, in Wagenmakers et

al. (2012). Ideally preregistration would entail that researchers write their paper before

collecting the data, that is, without data description, data analysis (but the analysis plan

should be in the paper), and conclusion. Based on this preregistration the journal will

decide whether the research is interesting enough to warrant publication (no threshold

values needed!). If the paper is accepted, the researchers collect the data, execute the

analyses, write a conclusion and their paper is ready to be published, irrespective of

whether the p value is smaller than .05 or not. Currently, preregistration can be done at,

for example, the Centre for Open Science at https://cos.io/rr/. There is also an

increasing number of journals that encourage preregistered research, an important example

is Psychological Science

(https://www.psychologicalscience.org/publications/psychological_science

/preregistration).

These developments led to a renewed attention for NHST and alternatives to NHST.

Wasserstein and Lazar (2016) highlighted when, why, and how p-values can properly be

used. Cumming (2012) advocates the use of confidence intervals which are summaries of

the information in the data with respect to the parameter of interest. The Bayesian

alternative for confidence intervals are credible intervals. The interested reader is referred

to Morey et al. (2016) for an evaluation and comparison of both types of intervals. In an
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attempt to reduce the use of p-values Trafimov and Marks (2015) require researchers to use

descriptive statistics to present their data and more or less forbid the use of inductive

inferential methods (like p-values and confidence intervals). Benjamin et al. (2017) propose

to change the usual significance level of .05 to .005. One of their motivations is that this

level will reduce publication bias and is much harder to achieve using questionable research

practices. Also interesting is the revival of the Fisherian interpretation of the p-value

(Hurlbert and Lombardi, 2009), that is, use it as a measure of evidence against the

null-hypothesis without referring to a pre-specified significance level.

This tutorial will focus on still another alternative for NHST: Testing hypotheses

using the Bayes factor. Kass and Raftery (1995) revived the interest in the work of Jeffreys

(1961), and Klugkist, Laudy, and Hoijtink (2005) and Rouder et al. (2009) provided the

first implementations in software. As will be elaborated in this tutorial, hypothesis

evaluation using the Bayes factor has features that are valuable for psychological research.

First of all, it does not provide a dichotomous reject/do-not-reject decision with respect to

null-hypotheses. It renders the evidence in favor of each of the hypotheses under

consideration and can also be used to quantify the support in the data in favor of the

null-hypothesis. Secondly, it can be used for the evaluation of multiple hypotheses while

automatically accounting for the fact that not one but multiple hypotheses are evaluated.

Thirdly, while collecting data the support for the hypotheses of interest can continuously

be updated (Bayesian updating). When a research project is planned and executed, but

the support in the data for the hypotheses of interest is not convincing, within the

Bayesian paradigm it is proper to collect more data and to re-evaluate the hypotheses.

Fourth, not the Type I and Type II error probabilities are controlled, that is, how often is

the correct decision made if data are repeatedly sampled from the null and alternative

populations, respectively (note that, Type I and Type II errors are determined independent

of the observed data). What is controlled are the Bayesian error probabilities, that is, what

are the probabilities of making incorrect decisions based on the information in the observed



BAYES FACTOR 7

data (Bayesian error probabilities do not consider what happens if data are repeatedly

sampled from the null and alternative populations).

Of course the Bayes factor too is criticized. First of all, it does not control the Type I

and Type II errors (it controls the Bayesian error probabilities). However, the Bayesian

t-test can be specified such that it results in the smallest possible average of Type I and

Type II error probabilities (Gu, Hoijtink, and Mulder, 2016). Furthermore, using the

Bayesian t-test while updating renders compared to NHST the same or smaller Type I and

Type II error probabilities while needing smaller sample sizes (Schonbrodt et al, 2017).

Thus, although Bayes factors do not aim to control the Type I and Type II errors, this

does not imply that these are "out of control". Secondly, as is elaborated in Sellke, Bayarri,

and Berger (2001) and Mulder (2014), for the evaluation of simple null-hypotheses (like, a

mean is equal to zero) the Bayes factor tracks (is a transformation of) the p-value as a

measure of evidence against the null-hypothesis. However, this does not imply that

properties of the Bayes factor that are valuable for psychological research (shortly

elaborated in the previous paragraph) transfer to the p-value, nor that this holds for all

hypotheses that can be evaluated by both the p-value and the Bayes factor. Thirdly, as

will be elaborated in this tutorial, in order to be able to compute a Bayes factor a,

so-called, prior distribution has to be specified. The choice of the variance of this

distribution is subjective. Researchers who favor objective inferences may object to this

feature. However, as will be elaborated in this tutorial: for hypotheses specified using

equality constraints (like the null-hypothesis) a, so-called, sensitivity analysis can be used

to determine the influence of the prior variance on the resulting Bayes factors; and, for

informative hypotheses (Hoijtink, 2012) specified using only inequality constraints, the

prior variance does not influence the resulting Bayes factors.

There are a number of Bayes factors that can be used to quantify the evidence in the

data for a null and alternative hypothesis. The discussion will be limited to the three that

are implemented in software and can thus be used for psychological research. The
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BayesFactor function from the R package (see, for the first paper about this package,

Rouder et al. 2009, and the website at

https://richarddmorey.github.io/BayesFactor/) follows in the tradition set by

Jeffreys (1961) and uses, so-called, Jeffreys-Zellner-Siow or g-priors (see, for example, Liang

et al., 2008), that is, default values for the variance of the prior distribution are proposed

that can be modified by the researcher to execute a sensitivity analysis. This package

enables the evaluation of null and alternative hypotheses in the context of analysis of

variance models, regression models, and contingency tables. The package BIEMS (see,

Mulder, Hoijtink, and, de Leeuw, 2012) and the website at

https://informative-hypotheses.sites.uu.nl/software/biems/ follows in the

tradition set by Berger and Pericchi (1996, 2004) and uses minimal training samples (a

small part of the observed data) to specify the variance of the prior distribution. This

package enables the evaluation of null, informative (such as, for example, directional

hypotheses like µ1 > µ2 > µ3, that is, three means that are ordered from largest to

smallest), and alternative hypotheses in the context of the multivariate normal linear

model. The R function bain (Gu, 2016; Gu, Mulder, and Hoijtink, 2018; Hoijtink, Gu, and

Mulder, 2018; https://informative-hypotheses.sites.uu.nl/software/bain/) follows

in the tradition set by O’Hagan (1995) and uses a fraction of the information in the data to

specify the variance of the prior distribution. The package enables the evaluation of null,

informative, and alternative hypotheses in a wide range of models such as, for example, the

multivariate normal linear model, generalized linear models, random effects models, and

structural equation models (see, for example, Gu, Mulder, Decovic, and Hoijtink, 2014).

For hypotheses that can be evaluated by each of the three packages it has not yet been

thoroughly explored if the respective Bayes factors are the same. However, the few data

sets that the authors have thus far evaluated with two or more of the approaches, tended

to render relatively comparable Bayes factors.

This tutorial will elaborate testing hypotheses using the Bayes factor. With the
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exception of the specification of the prior distribution, what is written about the Bayes

factor applies to each of the implementations in BayesFactor, BIEMS, and bain. This

tutorial will be illustrated with the Bayes factor implemented in bain (and thus also

discuss the specification of the prior distribution in bain) because it is the most versatile of

the three packages: it can evaluate null, informative, and alternative hypotheses in a wide

range of statistical models, and can be used such that it renders inferences that are robust

with respect to outliers and distributional assumptions (Bosman, 2018). The audience for

this tutorial are researchers who want to use their data to evaluate the null and alternative

hypotheses and/or informative hypotheses. It will thoroughly be elaborated and illustrated

what can be done with Bayes factors. This tutorial does not contain any technical

background and formulas. The interested reader can follow up on the references given or

surf to the Bayes Factor, BIEMS, and bain websites to find the complete (technical)

background. To keep the exposition as simple and accessible as possible, all illustrations

concern hypotheses with respect to the means from an independent groups ANOVA.

However, hypothesis evaluation using the Bayes factor is by no means limited to ANOVAs.

In fact, using bain, hypothesis evaluation using the Bayes factor can be executed for many

statistical models that are of interest to psychological researchers. The bain package

contains many examples that, among others, elaborate its use in the context of, ANCOVA,

multiple regression, equivalence testing, logistic regression, and repeated measures analysis.

Instructions for the installation of bain, the annotated R code BFtutorial.R used to

create this tutorial, and the data used, can be obtained by downloading the latest version

from the bain website. Reading this tutorial in combination with executing parts of

BFtutorial.R will directly provide readers with hand-on experience.

This tutorial is organized as follows. First, the Bayes factor will be introduced,

followed by an application to the evaluation of null and alternative hypotheses.

Subsequently, properties of the Bayes factor will be highlighted and discussed. The tutorial

continues with the application of Bayes factor for the evaluation of informative hypotheses,



BAYES FACTOR 10

including an application to the evaluation of replication studies. The tutorial ends with a

description of the bain package and a short conclusion.

Introducing the Bayes Factor

In this section the Bayes factor will be introduced and an interpretation of the Bayes

factor in terms of Bayesian probabilities will be given. Among others, more examples

follow later in this tutorial, the Bayes factor can be used to test the null and alternative

hypotheses.

Definition: The Null and Alternative Hypotheses

The null-hypothesis is usually of the form

H0 : the effect is zero,

and the alternative hypothesis of the form

Ha : not H0.

The effect may, for example, be a correlation, the differences between one or more pairs

of means, and one or more regression coefficients.

This tutorial will focus on the evaluation of hypotheses in the context of the ANOVA

model. With three groups it would hold that H0 : µ1 = µ2 = µ3 and Ha : not H0. Note

once more, that it is not required to use the null-hypotheses (alternatives will be provided

later in this tutorial). It should only be used if it provides a plausible description of the

population of interest. Note furthermore, that, in this tutorial, Ha will be replaced by Hu,

where the subscript u denotes that the means are unrestricted, that is, Hu : µ1, µ2, µ3. The

difference between both representation is that the Ha explicitly excludes µ1 = µ2 = µ3
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while Hu does not. In Bayesian statistics both representations are equivalent and will

render the same Bayes factors. 1

Definition: Bayes Factor

The Bayes Factor BF0u quantifies how much more likely the data are to be observed

under H0 than under Hu. Therefore, BF0u can be interpreted as the relative support

in the observed data for H0 versus Hu. If BF0u is 1, there is no preference for either

H0 or Hu. If BF0u is larger than 1, H0 is preferred. If BF0u is between 0 and 1, Hu is

preferred.

If, for example, BF0u = 4, the support in the observed data is 4 times larger for H0

than for Hu. The Bayes factor of Hu versus H0, that is, reversing the order of the

hypotheses, is denoted by BFu0 = 1/BF0u. Therefore, BF0u = .1 implies that BFu0 = 10,

that is, the relative support in the data for Hu is 10 times larger than for H0. The support

expressed by the Bayes factor is determined by balancing the relative fit and the relative

complexity of H0 versus Hu. A good hypothesis has a good fit, that is, it provides an

adequate description of the data at hand. Because better predictions can be derived from

more specific hypotheses, a good hypothesis is not unnecessarily complex, that is, it is

specific and parsimonious. Due to inclusion of the relative complexity the Bayes factor

functions as a so-called Occam’s razor, that is, when two hypotheses fit the data equally

well, the simples (least complex) hypothesis is preferred. Thus, if the observed effect is in

line with H0, the more parsimonious hypothesis H0 wil be preferred over the more complex

hypothesis Hu. As is shown in, for example, Hoijtink (2012, pp. 59, Section 3.7.1), under

specific circumstances, the Bayes factor is equal to the following ratio: BF0u = f0/c0, where

f0 and c0 denote the relative fit and relative complexity of H0 versus Hu, respectively.
1Bayes factors are computed by integrating so-called posterior and prior distributions with respect to

(parts of) Hu. Whether or not µ1 = µ2 = µ3 is included does not affect the outcome because, loosely

spoken, among the infinite number of possible combinations of values for µ1, µ2 and µ3 that are in agreement

with Hu, µ1 = µ2 = µ3 has a "zero probability" of occurring.
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Since fit and complexity of hypotheses (here H0, which explains the subscript 0 in f0 and

c0, later on for other hypotheses other subscripts will be used) are always determined

relative to Hu, the index u is implicit in the notation f0 and c0. This expression of the

Bayes factor is known as the Savage-Dickey method (see, for example, Wagenmakers, et al,

2010 and Wetzels, Grasman, and Wagenmakers, 2010).

Using a simple example prior and posterior distributions, complexity and fit will now

be introduced. The interested reader is referred to Gu, Mulder, and Hoijtink (2018) and

Hoijtink, Gu, and Mulder (2018), for the complete statistical background. At the top of

Figure 1 three hypotheses corresponding to the (Bayesian) t-test are displayed: Hu : µ1, µ2,

H1 : µ1 ≈ µ2, and H2 : µ1 > µ2. Note that, in order to make the exposition below accessible

and fitting for a tutorial, the exact equality in H0 is replaced by an approximate equality in

H1 which allows for small deviations from H0 (the difference between both means is less

than .2).

First of all, the posterior distribution of µ1 and µ2 has to be defined.

Definition: Posterior Distribution

The posterior distribution summarizes the information in the data and the prior dis-

tribution (see the next Definition) with respect to the population mean of each of the

groups in the ANOVA. The implementation in bain renders µg ∼ N (xg, σ̂
2/Ng) for each

of g = 1, ..., G groups, where xg denotes the sample mean, σ̂2 the sample estimate of

the pooled within variance, and Ng the sample size in Group g.

The dashed circle in the top left hand figure in Figure 1 represents the posterior

distribution of µ1 and µ2 which is a bivariate normal distribution with N1 = N2 = 20,

x1 = .5, x2 = 0, and σ̂2/Ng = .05 for g = 1, 2, that is, the posterior standard deviation is

about .22. It is a so-called 95% iso-density contour, that is, a two dimensional confidence
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interval where both sample means determine the center and the corresponding posterior

standard deviations the radius (which is about 2 x .22 = .45). As can be seen, the data

indicate that it is most likely that both µ1 is positive and that µ2 is zero. As can also be

seen, this corresponds to Hu because there are no restrictions on both means. Note that,

bain cannot only be applied in the context of ANOVA, but in the context of a wide range

of statistical models. To achieve this, it works with a normal approximation of the

posterior distribution of only the parameters that are used to specify the hypotheses of

interest (see Gu, Mulder, Dekovic, and Hoijtink, 2014, Gu, Mulder, and Hoijtink, 2018,

and, Hoijtink, Gu, and Mulder, 2018, for the complete motivation and elaboration). For

the ANOVA model this implies that only the posterior distribution of the µ’s is used (the

within group variance σ2 is integrated out) and their posterior is approximated by a

normal distribution.

Definition: Prior Distribution

When testing hypotheses using the Bayes factor, the prior distribution of the population

mean of each of the groups in the ANOVA is chosen such that it renders an adequate

quantification of the complexity (see the next Definition) of an hypothesis. The imple-

mentation in bain renders µg ∼ N (µB, 1/bg × σ̂2/Ng) for each of g = 1, ..., G groups.

This prior distribution has three important characteristics: i) the prior mean µB is

chosen such that it is located on the boundary of the hypotheses under consideration

(this is in line with Jeffreys, 1961, and holds also for the Bayes factors implemented

in BayesFactor and BIEMS); ii) it has the same shape (a normal distribution) as the

posterior distribution; and, iii) it is less informative than the posterior distribution due

to a larger variance obtained by multiplying the posterior variance with a fraction 1/bg.

The fraction bg (the fraction of information in the data used to specify the prior distri-

bution, O’Hagan, 1995) will further be discussed in the section dealing with "Sensitivity

Analysis".
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The solid circle in the top left hand figure in Figure 1 represent the 95% iso-density

contours of the prior distribution of µ1 and µ2. As can be seen the prior distribution is

centered on 0,0 (one of the values on the boundary of H1, the approximation of H0, and

H2)2, has the same shape as the posterior distribution, and has a larger variance than the

posterior distribution (1/bg × σ̂2/Ng = 1 for g = 1, 2, that is, the prior standard deviation

equals 1 for each mean and the radius of the 95% isodensity contour is 2 x 1 = 2). As can

also be seen, this corresponds to Hu because there are no restrictions on both means.

Definition: Complexity

The complexity of an hypothesis is the proportion of the prior distribution that is

supported by the hypothesis at hand. The complexity has a value between 0 and 1

where smaller values denote a less complex, that is, more parsimonious, hypothesis.

As may be clear, H1 : µ1 ≈ µ2 is more specific (less complex) than H2 : µ1 > µ2. As

can be seen on the top row of Figure 1, H1 (the area within the diagonal lines) supports

about 11% of the prior distribution (the solid circle) while H2 (the area below the diagonal

line) supports 50% of the prior distribution. This means that c1 = .11 and that c2 = .50,

that is, a small and larger relative complexity, respectively. Readers familiar with Akaike’s

information criterion (Akaike, 1974) and other information criteria (see, for example,

Burnham and Anderson, 2002) may be familiar with a quantification of complexity in

terms of the number of parameters in a model. As was illustrated, the quantification of

complexity in the Bayes factor has a different form.

2Any other value on the boundary could also have been used. The interested reader is referred to Gu,

Mulder, and Hoijtink, 2018, for the technical elaboration.
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Definition: Fit

The fit of an hypothesis is the proportion of the posterior distribution that is supported

by the hypothesis at hand. The fit has a value between 0 and 1 where larger values

denote a better fit.

As can be seen in the top row of Figure 1, about 15% of the posterior distribution is

supported by H1 (the area within the diagonal lines) and about 94% of the posterior

distribution is supported by H2 (the area below the diagonal line). This implies that

f1 = .15 and that f2 = .94. The fit and complexity values from Figure 1 can be used to

compute Bayes factors: BF1u = f1/c1 = .15/.11 = 1.36, that is, the support in the data for

H1 is 1.36 times larger than the support for Hu; and, BF2u = f2/c2 = .94/.50 = 1.88, that

is, the support in the data for H2 is 1.88 times larger than for Hu. It is also possible to

compare H1 directly to H2: BF12 = BF1u/BF2u = 1.36/1.88 = .72, that is, a slight

preference for H2.

Moving from the top row in Figure 1 to the bottom row shows the effect of increasing

the sample size to N = 64 per group. As can be seen in the left hand column, the prior

distribution remains unchanged, that is, it is independent of the sample size. As can also

be seen, a larger sample contains more information about µ1 and µ2 and therefore the

posterior distribution has a smaller variance (σ̂2/Ng = .016 for g = 1, 2, that is, the

posterior standard deviation is about .125 in each group), that is, it is more precise. For

the larger sample size, f1 ≈ .00 and f2 ≈ 1.0. This renders BF1u = f1/c1 = .00/.11 = 0,

BF2u = f2/c2 = 1.0/.50 = 2, and, consequently, BF12 = BF1u/BF2u = 0/1 = 0, that is,

after observing more data H1 is zero times as likely as H2. In summary, increasing the

sample size from 20 to 64 per group, lead to a considerable increase in the support for H2.
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Bayesian (Error) Probabilities

In the Bayesian framework the uncertainty about hypotheses is quantified using

Bayesian probabilities. On the one hand there are the prior probabilities P (H0) and

P (Hu), that is, the probabilities of H0 and Hu before observing the data. On the other

hand there are the posterior probabilities P (H0 | data) and P (Hu | data), that is, the

probabilities of H0 and Hu after observing the data. Throughout this tutorial it will be

assumed that, before observing the data, H0 and Hu are equally likely. This translates into

equal prior probabilities: P (H0) = P (Hu) = .53. As far as known to the authors, this

choice is until now almost by default used by researchers. It is a reasonable choice, because

both H0 and Hu should be a priori plausible descriptions of the population of interest.

Nevertheless, further research into the specification of prior probabilities could be worth

while. It has to be stressed, that the computation of the Bayes factor does not depend on

the choice of the prior probabilities. These only play a role when the Bayes factor is

translated into posterior probabilities, that is, into Bayesian error probabilities.

Definition: Bayesian (Error) Probabilities

The Bayesian probabilities (Berger, 2003) P (H0 | data) and P (Hu | data) (also called

posterior probabilities) quantify the support for H0 and Hu, respectively, after observing

the data. Thus, P (H0 | data) can be seen as the Bayesian error probability when Hu is

selected as the preferred hypothesis, and P (Hu | data) is the Bayesian error probability

when H0 is selected as the preferred hypothesis. The ratio of these probabilities (the

posterior odds) can be computed using the BF and the prior odds via:

P (H0|data)
P (Hu|data) = BF0u ×

P (H0)
P (Hu) , (1)

3Later in this paper more than two hypotheses will be considered at the same time. If there are three

hypotheses, the prior probabilities will be .33 each, if there ar four hypotheses, the prior probabilities will

be .25 each, etc.
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where P (H0) and P (Hu) denote the prior probabilities, that is, an evaluation of the

support for the hypotheses before observing the data.

As can be seen in Equation (1), the Bayes factor is used to update the information in

the prior probabilities with the information in the data rendering the posterior probabilities

P (H0|data) and P (Hu|data) that quantify how plausible the hypotheses are after observing

the data. These probabilities can be interpreted as Bayesian error probabilities. If, for

example, BF0u = 4, the relative support in the data for H0 and Hu can be expressed as

P (H0|data)
P (Hu|data) = 4× .5

.5 = 4. (2)

Combining this knowledge with the fact that posterior probabilities have to add up to 1.0

renders P (H0|data) = .8 and P (Hu|data) = .2. If, subsequently, H0 is preferred, the

Bayesian error probability is .2 because there is still 20% chance that Hu is true.

Note that Bayesian probabilities are not classical probabilities. As an example let H0

state that the effect of a drug is zero. The classical probability that H0 is true is 1 or 0

because the hypothesis is either true or not. Note that, this classical probability is not the

p-value which is, in the Fisherian interpretation a measure of evidence against the

null-hypothesis (Hurlbert and Lombardi, 2009). Bayesian probabilities on the other hand

(whether prior or posterior probabilities), quantify one’s uncertainty about H0 and Hu. In

light of new information these probabilities can be updated (see later in this paper the

section about Bayesian updating), e.g., using new data to update prior probabilities into

posterior probabilities as is done in Equation 1.

Note furthermore, that the Type I and Type II error probabilities used in NHST are

not conditional on the data. If the t-test for the evaluation of one mean is executed with

α=.05 for two different data sets of the same size, the first may render a Cohen’s d of .2

with a p-value of .03 and the second a Cohen’s d of .8 with a p-value of .00. In both cases

H0 would be rejected with a significance level of .05 and the Type I error probabilities

would be equal to .05. This feels somewhat counterintuitive because an effect of .8 is much
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more unlikely under H0 than an effect of .2 while the same error probability of .05 would

be reported (Berger, Brown, and Wolpert, 1994). Bayesian error probabilities, on the other

hand, are computed conditional on the information in the data. Since, if both data sets

have the same size, it is much less likely to observe a Cohen’s d of .8 than a Cohen’s d of .2

when H0 is true, the Bayesian error associated with a preference of Hu will be smaller for a

data set with a Cohen’s d of .8 (e.g., P (H0 | data) = .1 and P (Hu | data) = .9) than for a

data set with a Cohen’s d of .2 (e.g., P (H0 | data) = .3 and P (Hu | data) = .7).We view

this as an advantage of the Bayesian approach because the uncertainty about the

hypotheses is stated conditionally on the information in the observed data.

Evaluating the Null and Alternative Hypotheses using the Bayes Factor

This tutorial is illustrated using one of the studies from the OSF reproducibility

project psychology (Open Science Collaboration, 2015; https://osf.io/ezcuj/). Monin,

Sawyer, and Marquez (2008) investigate the attraction to "moral rebels", that is, persons

that take an unpopular but morally laudable stand. There are three groups in their

experiment: in Group 1 participants rate their attraction to "a person that is obedient and

selects an African American person from a police line up of three"; in Group 2 participants

execute a self-affirmation task intended to boost their self-confidence after which they rate

"a moral rebel who does not select the African American person"; and, in Group 3

participants execute a bogus writing task after which they rate "a moral rebel". The

authors expect that the attraction to moral rebels is higher in the group executing the

self-affirmation task (that boosts the confidence of the participants in that group) than in

the group executing the bogus writing task, possibly even higher than in the group that

rates the attraction of the obedient person. Their data will henceforth be referred to as the

Monin data. Corresponding to their study are the following null and alternative hypotheses

that will be used in this and the following sections:

H0 : µ1 = µ2 = µ3
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Hu : µ1, µ2, µ3,

where, µ1, µ2, and µ3 denote the mean attractiveness scores in Groups 1, 2, and 3,

respectively.

The interested reader should now surf to https://informative-hypotheses.sites.

uu.nl/software/bain/ download and unzip the latest version of bain, read and execute

the installation instructions. Subsequently, BFtutorial.R can be opened in RStudio. Use

the cursor to select the lines corresponding to Tutorial Step 1 in BFtutorial.R. Clicking

the Run button will load the necessary R packages. Running Tutorial Step 2 will read the

data from monin.txt and holubar.txt (the latter will be introduced later in this paper).

Note that both data sets were recreated using the descriptives presented in Monin, Sawyer,

and Marquez (2008) and Holubar (2015), respectively (the code used can be found at the

end of BFtutorial.R). Running Tutorial Step 3 will render the descriptive statistics for

the Monin data that can be found in Results 1. Note furthermore, that small modifications

have been made to the bain output to make it correspond to the notation and labeling

used in this tutorial.

Results 1: Using describeBy to Obtain Descriptives for Monin

group n mean sd

1 19 1.88 1.38

2 19 2.54 1.95

3 29 0.02 2.38

Running Tutorial Step 4 will render the output presented in Results 2 obtained using

bain to evaluate H0 and Hu using the Bayes factor. This resulting Bayes factor is listed

under BF.c. As will be elaborated later in the paper, BF.c denotes the Bayes factor of a

hypothesis against its complement. For now it suffices to know that if a hypothesis is

specified using equality constraints (which is the case here) then the complement is



BAYES FACTOR 20

equivalent to Hu. As can be seen, BF0u = .001. The implication is that there is a 1000

times more support in the Monin data for Hu than for H0. The posterior probabilities

(listed under PMPb) show that the Bayesian error associated with a preference for Hu is

only .001.

Results 2: Using bain to Obtain the Bayes Factor for the Monin Data

Hypothesis testing result

f= f>|= c= c>|= f c BF.c PMPa PMPb

H0 0.000 1.000 0.015 1.000 0.000 0.015 0.001 1.000 0.001

Hu . . . . . . . . 0.999

Properties of the Bayes Factor

This section will highlight various properties of the Bayes factor. The focus will be on

properties that are relevant for research psychologists evaluating hypotheses using data

from their domain of interest.

How Large Should the Bayes Factor Be?

A question that is often asked by researchers using the Bayes factor is how large it

should be in order to be able to draw decisive conclusions. More precisely they want to

know: how large should BF0u be in order to prefer H0 and how small should BF0u be in

order to prefer Hu? Behind this question is a deeply ingrained need for a threshold value

that, like an α-level of .05 in NHST, can be used to decide which hypothesis should be

chosen. However, unlike NHST, the Bayes factor does not render a dichotomous (reject or

not reject H0) decision, it is a quantification of the support in the data for the hypotheses

under consideration. If BF0u is about 1, there is no preference for the null or alternative

hypothesis, that is, the Bayes factor can be indecisive and additional data are needed to

obtain more evidence about which hypothesis is likely to be true. It is clear and
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undisputed that a BF0u of 100 (or .01) is not about 1, there is clear support for H0 (or

Hu), and the Bayesian error probability is so small (.01), that for all practical purposes a

decisive conclusion can be made which hypothesis is the best. If BF0u is 10 (or .1), there

still is a preference for H0 (or Hu) but with a Bayesian error probability of .09 the other

hypothesis can not yet be discarded. But if BF0u is 2 (or .5) it is not at all clear whether it

is wise to prefer H0 over Hu (or Hu over H0), because the Bayesian error probability is .33.

Consequently, for a proper interpretation of a Bayes factor formal threshold values are not

needed because the relative evidence for the hypotheses based on the Bayes factor speaks

for itself.

Based on the posterior probabilities of the hypotheses of interest, the same question

can be asked: when is a posterior probability large enough to "reject" a hypothesis.

However, here the same holds as for the Bayes factor, that is, the goal of Bayesian

hypothesis testing, is not to decide which hypotheses should be rejected or accepted after

observing the data. The goal is to quantify the uncertainty about the hypotheses using the

observed data. For example, when posterior probabilities of .97 and .03 are obtained for Hu

and H0, one would conclude that there is strong evidence that Hu is true because there is

only a small posterior probability that H0 is true. However, in order to completely rule out

H0, which can be done when its posterior probability is about zero, more data are needed.

When this is clear, researchers immediately have a new question: how large (or small,

but this distinction will be ignored in the remainder of this section) should the Bayes factor

be for a journal to accept my paper for publication? It is very unfortunate that threshold

values that can be used to answer this question have appeared in the literature. Sir Harold

Jeffreys, who originally proposed the Bayes factor (Jeffreys, 1961), used a BF0u larger than

3.2 as "positive" evidence in favor of H0. He also proposed to use BF0u larger than 10 as

"strong" evidence. More recent, Kass and Raftery (1995) suggested to use larger than 3 and

larger than 20, respectively. One of the implications of these labels and numbers is that 3

might very well become the counterpart of .05 when using the Bayes factor. Then, as was
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elaborated in the introduction for NHST, applications of hypotheses testing using the

Bayes factor would also become subject to phenomena like publication bias and

questionable research practices. It is preferable to preregister ones research, execute it, and

report the support for the hypotheses entertained in terms of the Bayes factor and

Bayesian error probabilities obtained without reference to a threshold value.

The Bayes Factor can be Used to Quantify Support for the Null Hypothesis

NHST is focussed on the null hypothesis. The outcome can be that H0 is rejected or

that it is not rejected. The outcome cannot be that H0 is accepted (see, for example,

Wagenmakers, 2007). When H0 and Hu are evaluated using the Bayes factor, both

hypotheses have an equal standing, that is, neither has the role of the traditional null or

alternative hypotheses, they are simply two hypotheses. The probability of observing the

data is computed given each hypothesis and translated into the Bayes factor. This implies

that the Bayes factor may result in a preference of H0 over Hu (if the probability of the

data given H0 is the largest) as well as a preference of Hu over H0 (if the probability of the

data given Hu is the largest). For the Monin data BF0u = .001, that is, Hu is preferred over

H0. However, had BF0u = 50, H0 would have received 50 times more support than Hu.

The Bayes Factor Selects the best of the Hypotheses Under Consideration

The Bayes factor selects the best of the hypotheses under consideration. For the

Monin data this implies that irrespective of whether the data favour H0 or Hu, it may be

that both hypotheses provide an inadequate description of the population from which the

data were sampled. It is very well possible that there are other hypotheses (that were not

considered) for which the support in the data is (much) larger. Consider again, the Monin

data that provide 1000 times more support for Hu than for H0. What this tells us, is that

the three population means are very likely not equal to each other. It does not tell us if all

the means are different or that there is a pair among them that is the same. This can be



BAYES FACTOR 23

addressed by the following set of hypotheses which constitute the Bayesian counterpart of a

pairwise comparison of means analysis:

H0 : µ1 = µ2 = µ3

Hu1 : µ1 = µ2, µ3

Hu2 : µ1 = µ3, µ2

Hu3 : µ2 = µ3, µ1

Hu : µ1, µ2, µ3.

Executing Tutorial Step 5 renders the output presented in Results 3. In the column

labeled BF.c each hypothesis is tested against Hu. Note once more, to avoid confusion,

that BF.c denotes the Bayes factor of a hypothesis against its complement (discussed later

in this paper). For now it suffices to know that if a hypothesis is specified using only

equality constraints (which holds for H0, Hu1, Hu2, and Hu3) then the complement is

equivalent to Hu. As can be seen, BF0u is still .001, that is, the support for Hu is still 1000

times larger than for H0. However, it can now also be seen that the support for Hu1 is 3.22

times larger than the support for Hu. Stated otherwise, compared to Hu1 both H0 and Hu

are relatively inadequate hypotheses and if only these two are considered, the best of two

relatively inadequate hypotheses will be preferred. Once the other hypotheses are added, it

becomes clear that Ha1 is the preferred hypothesis. Note that, the Bayes factor and

posterior probabilities can be computed from the numbers listed under f and c, e.g., for

Hu1, BF.c = .367/.114 = 3.216 and BF.c = .754/.235 = 3.216. A further elaboration of the

numbers that can be found in the bain output will follow in the section dealing with

informative hypotheses.

Results 3: The Best of the Hypotheses under Consideration

Hypothesis testing result
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f= f>|= c= c>|= f c BF.c PMPa PMPb

H0 0.000 1.000 0.015 1.000 0.000 0.015 0.001 0.000 0.000

Hu1 0.367 1.000 0.114 1.000 0.367 0.114 3.216 0.985 0.754

Hu2 0.005 1.000 0.114 1.000 0.005 0.114 0.045 0.014 0.011

Hu3 0.000 1.000 0.114 1.000 0.000 0.114 0.001 0.000 0.000

Hu . . . . . . . . 0.235

What is illustrated, is that the posterior probabilities renders the degree of support in

the data for the hypotheses under consideration. They cannot be used to detect the truth

with respect to the population of interest because there may be hypotheses that are

superior to the hypotheses under consideration. What is obtained is not the truth but the

best hypothesis from the set of hypotheses under consideration which will only survive

until a better hypothesis is conceived and evaluated.

The Costs of Evaluating More than Two Hypotheses

As was highlighted in the previous section, it is straightforward to evaluate more than

two hypotheses using the Bayes factor. However, there is a price to pay. When only H0

and Hu were considered, the Bayesian error probability associated with a preference of Hu

was .001 (see, Results 2). When five hypotheses were considered, the Bayesian error

associated with a preference of Hu1 was equal to 0 + .011 + 0 + .235 = .246 (the sum of

the posterior probabilities of the other hypotheses, see Results 3), that is, the larger the

number of hypotheses under consideration, the larger the probability of preferring the

wrong hypothesis. Therefore, one should only include hypotheses that are plausible and

represent the main (competing) expectations with respect to the research question at hand.

Bayesian Updating as an Alternative for Sample Size Determination

When using the Bayes factor, it would be useful to know the sample size needed to

achieve Bayesian error probabilities of a specified size. However, as to yet, there are only a
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few papers on this topic (see, for example, De Santis, 2004, and Klugkist et al., 2014) and

software for sample size determination is lacking.

An alternative for sample size determination is Bayesian updating (Rouder, 2014;

Schonbrodt, et al., 2017). Bayesian updating resembles NHST based sequential data

analysis (see, for example, Demets and Lan, 1994). The basic idea is to collect an initial

batch of data, compute the p-value to evaluate H0, if necessary collect more data,

recompute the p-value, and to repeat the process until either the p-value is below the

α-level chosen, or the process has been repeated a pre-specified number of times. Sequential

data analysis requires careful planning because, in order to avoid an inflated overall α-level,

the α-level per test has to be adjusted for the number of times a p-value is computed.

The Bayesian approach does not focus on the α-level. The focus of Bayesian

updating is to achieve decisive evidence towards one of the hypotheses such that competing

hypotheses can be ruled out with small enough Bayesian error probabilities, that is, with

small enough probabilities of making an erroneous decision given the data that are

currently available. This implies that after the collection of additional data both Bayes

factor and posterior probabilities can without further ado be recomputed and evaluated.

Consider, for example, the evaluation of H0, Hu1, Hu2, Hu3, and Hu presented in Results 3.

As can be seen the support for Hu1 is at least three times larger than the support for each

of the other hypotheses. This is not overwhelming support, because a choice in favor of

Hu1 is still associated with a Bayesian error probability of .246. If additional data are

collected, more information becomes available, which, if consistent with the information in

the first batch of data, will increase the Bayes factor in favor of Hu1 and reduce the

Bayesian error probability. It may also happen that the additional data provide less

support for Hu1, which will lead to a reduction in the size of the Bayes factor in favor of

Hu1 and to an increased Bayesian error probability if H1u would be selected.

As is highlighted by Rouder (2014), the stopping rule is optional, that is, additional

data can be collected as often as is deemed necessary. If only H0 and Hu would be under
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investigation, this implies that one can start with only a few persons, compute BF0u, add a

few persons, recompute BF0u, and continue until the Bayes factor is large enough (support

for H0), small enough (support for Hu), or stabilizes around one (no preference for either

H0 or Hu). Such a procedure is in many cases a viable alternative for sample size

calculations before the data are collected. An illustration is presented in Results 4 that can

be obtained by running Tutorial Step 6. It concerns updating of BF0u using the Monin

data, starting with an initial sample size of two per group and using increments of one

person per group.

Results 4: Bayesian Updating

Updating BF0u using the Monin data. Initial sample size equal to 2 per group, 1

person per group increments until a final sample size of 19 per group.
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As can be seen, based on 19 persons per group it seems that BF0u = .04 which

indicates a preference for Hu. If a smaller value of the Bayes factor is deemed necessary

more persons should be collected. Note that, the Bayes factor has a different size from the
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one reported in Results 3 because here only the first 19 of the 29 persons in Group 3 have

been used.

Sequential evaluation of H0, Hu1, Hu2, Hu3, and Hu by means of posterior probabilities

is presented in Results 5 and can be obtained by running Tutorial Step 7. As can be seen,

around the 17th person matters are rather clear, that is, Hu1 is the preferred hypothesis,

but Hu can not yet be excluded. Continuation is only warranted if the Bayesian error

probabilities are not yet deemed small enough. As is also illustrated in Results 5, it is not a

good idea to base results on too few persons per group. Stopping after, for example, the

8th person would have lead to a preference for Hu2 instead of Hu1. It is therefore

recommended to always continue until each line (whether representing a Bayes factor or a

posterior probability) is showing a stable increasing or decreasing trend (as is almost the

case in Results 5, only the line for Hu does not yet show a stable trend).

We illustrated Bayesian updating using existing data. If the data still have to be

collected, researchers should consider the guidelines presented in Rouder (2014),

Schonbrodt, et al. (2017), and Schonbrodt and Wagenmakers (in press). First of all,

determine the desired degree of evidence, that is, be explicit about the stopping rule. In

other words, once the lines in plots like Results 4 and 5 show stable trends, at which size of

the Bayes factor or the largest posterior probability will the updating process be stopped.

Secondly, decide on the size of an initial batch of persons before computing Bayes factors

and posterior probabilities for the first time. For the Bayesian t-test, Rouder (2014),

Schonbrodt, et al. (2017), and Schonbrodt and Wagenmakers (in press), advise to start

with an initial batch of 20 persons per group. Together with the requirement that the

Bayes factor and posterior probabilities should show stable trends when updating (do not

stop the updating process after adding one person to each group), this will provide some

protection against stopping the updating process too soon because a small sample may

paint an inaccurate picture of the population of interest. Generalizing the advise for the

Bayesian t-test, an initial batch of 20 persons per group can also be used when updating in
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the context of a Bayesian ANOVA. However, attention for the application of Bayesian

updating is relatively recent and the subject of ongoing research. For other designs and

analyses as to yet only common sense is available to determine the size of the initial batch

of persons. The interested reader is referred to Schonbrodt and Wagenmakers (in press).

Their Bayesian design analysis will, very likely, in the future be generalized beyond the

context of the Bayesian t-test. Thirdly, decide on the maximum number of persons that can

be obtained (one may not be able to continue sampling indefinitely due to time and money

restrictions, or because the number of persons with a certain characteristic is limited).

Fourth, present the choices made in a preregistration of the research project at hand.

Results 5: Bayesian Updating of Posterior Probabilities

Analysis of the Monin data. Initial sample size equal to 2 per group, 1 person per

group increments until a final sample size of 19 per group.
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Sensitivity Analysis

As was elaborated when discussing the complexity of the null-hypothesis, to compute

the Bayes factor, the variance of the prior distribution for each of the means appearing in

the hypotheses has to be specified. In bain the prior variance is computed using a fraction

of the information in the data for each group mean (O’Hagan, 1995; De Santis and

Spezzaferri, 2001; Mulder, 2014). More specifically, as was highlighted in the definition of

the prior distribution, for an ANOVA, the variance of the prior distribution for each of the

means is
1
bg

× σ̂2

Ng

, (3)

where σ̂2 denotes the estimated residual variance of an ANOVA, there are g = 1, ..., G

groups, where G denotes the number of groups, J denotes the number of constraints used

to specify the null hypothesis, and bg = J
G
× 1

Ng
is a fraction of the information with respect

to µg in the data for Group g. Note that, the total information is contained in Ng

observations, and that bg is a fraction of this information (see, Gu, Mulder, and Hoijtink,

2018, and, Hoijtink, Gu, and Mulder, 2018, for the details and further elaborations). The

idea of using a fraction of the information in the data to specify the prior variance is

well-established. The interested reader is referred to Spiegelhalter and Smith (1982),

Raftery (1995), Berger and Pericchi (1996, 2004), and Mulder et al. (2010, 2012, 2014).

The idea ensures that the prior variance is neither too small nor too large but tailored to

the uncertainty of the means in the data set at hand using a fraction of the information in

the data corresponding to a so-called minimal training sample.

The evaluation of H0 and Hu using the Monin data presented in Results 2 was based

on bg = 2
3 ×

1
Ng

which renders a prior variance of 6.125 for each of the groups because

σ̂2 = 4.085. However, consider once more, the middle figure in the top row of Figure 1. The

complexity of H1 (as an approximation of H0) was .11. Now imagine that the prior

distribution (the solid circle) has a larger variance (the radius of the circle becomes larger).

Then the prior distribution will be more spread out, and the proportion supported by H1
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will become smaller, e.g. .01. Hence, the larger the prior variance, the smaller the relative

complexity of H1. As a consequence BF1u = f1/c1 will become larger. In Figure 1 with the

smaller prior variance it was .15/.11=1.36, with the larger prior variance it could have been

.15/.01=15. The same holds for H0 (of which H1 is a close approximation) but the technical

elaboration needed to show that would not be fitting for a tutorial. Stated otherwise, when

the null hypothesis is evaluated (the elaboration in this section holds for all hypotheses

specified using (about) equality constraints) Bayes factor is sensitive to the choice of bg.

A so-called sensitivity analysis can be used to determine the effect of this choice on

the outcomes. A simple sensitivity analysis is obtained running Tutorial Step 8a where the

Monin data are analyzed using fractions bg, 2× bg, and 3× bg for the specification of the

prior variance. As will be seen for the Monin data, BF0u = .001 irrespective of the choice of

the fraction. In other words, the results are robust with respect to reasonable choices of the

fraction of information and the corresponding prior variance. However, executing the

sensitivity analysis with the Holubar data that will be introduced later in this tutorial (run

Tutorial Step 8b), will show that although the conclusions are in the same direction (H0 is

the preferred hypothesis), the size of the Bayes factor and the Bayesian error probabilities

do to some extent depend on the fraction chosen. For fractions of bg, 2× bg, and 3× bg,

BF0u will be 5.02, 2.51, and 1.67, respectively.

In our experiences so far, usually roughly the same conclusion is obtained if

sensitivity analyses are executed, but there is no guarantee that this will always be the

case. As default it is preferred to use a prior variance based on the fraction bg because that

renders the largest prior variance and therefore the largest support for H0. In an era of

heightened awareness of publication bias, sloppy science, and irreplicability of research

results, researchers should be conservative, that is, convincing evidence is needed before

another hypothesis is preferred over H0. However, it is up to the users of bain to decide if

they want to follow this preference or if they want to execute a sensitivity analysis.
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Outliers and Model Assumptions

There has been a fair amount of literature on the effect of outliers and violation of

model assumptions on NHST in the context of ANOVA. An outlier is a person whose score

on the dependent variable is quite different from the scores of the other persons in the

group. ANOVA assumptions that received attention are: the score of each person should

be independent of the score of the other persons; within each group the scores have to be

normally distributed; and, each group should have the same residual variance. Various

approaches to detect violations of model assumptions have been proposed, the interested

reader is referred to Miller (1998) for an elaborate overview. These approaches can be used

both when NHST and Bayes factors are used for hypotheses evaluation.

When Bayes factors are used for hypotheses evaluation, the presence of outliers is

equally detrimental as when NHST is used. To illustrate this, two outliers with scores of 9

and 10 on attraction, respectively, were added to Group 3. Running Tutorial Step 9

rendered Results 6. As can be seen, due to the presence of two outliers, BF0u changed from

.001 to .921, which changed the conclusion from "quite some evidence in favor of Hu" to

"hardly any evidence in favor of Hu". There is one study in the context of ANOVA into the

effect of violation of the assumption of homogeneous variances on hypotheses evaluation by

means of the Bayes factor (Van Rossum, van de Schoot, and Hoijtink, 2013). Although

further study is definitely needed, it appears that the Bayes factor, like NHST, is robust if

the violations are not too extreme (the ratio of the smallest to largest sample size is smaller

than 1:4, and the ratio of smallest too largest within group variance is smaller than 1:10).

Because, similar as NHST, the Bayes factor depends on the employed statistical

model, it is likely that the Bayes factor is also sensitive to model violations. Therefore,

researchers are well advised to consider the following courses of action. Define what are

considered to be outliers in a preregistration of your research. Subsequently, two courses of

action are open when it turns out that the data contain outliers. First of all, outliers can

be removed from the data before executing the desired analyses. Secondly, so-called, robust
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inference (see, for example, Wilcox, 2017) can be used, that is, use statistical approaches

that are not sensitive to the presence of outliers (a simple example is using the median

instead of the mean). Recently, robust Bayes factors hypothesis evaluation in the context

of the ANOVA model has become available. The interested reader is referred to Bosman

(2018) which can be obtained from the bain website. The independence assumption is, for

example, violated if persons are organized within, so called, level two units, like children

within class rooms, patients within therapists, and employees within companies. In such

cases the ANOVA model can be replaced by a multi-level model (Hox, 2010). Define in a

preregistration what are considered to be unequal variances and if this happens to be the

case in your data use the ANOVA equivalent of an unequal variances t-test (Derrick, Toher,

and White 2016; an example of a unequal variances Bayesian t-test is contained in the bain

package). Define in a preregistration what is considered to be a violation of the normality

assumption and if this happens to be the case in your data use a robust Bayes factor.

Results 6: The Effect of Two Outliers

Hypothesis testing result

f= f>|= c= c>|= f c BF.c PMPa PMPb

H0 0.009 1.000 0.009 1.000 0.009 0.009 0.921 1.000 0.479

Hu . . . . . . . . 0.521

Evaluating Competing Informative Hypotheses using the Bayes factor

So far the focus has been on the evaluation of the null and alternative hypotheses. As

was elaborated in the introduction, the null hypothesis should not "unthinkingly" be used,

but only if it provides a plausible description of the population of interest. Furthermore,

the evaluation of H0 and Hu in this tutorial highlighted that if Hu is the preferred
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hypothesis, not a lot is learned, that is, "something is going on, but it is unclear what".

There is evidence that differences between means are present, but it is unclear between

which means and in which direction. In that sense testing H0 against Hu may not be very

informative. This can be remedied by using and evaluating informative hypotheses

(Hoijtink, 2012), that is, hypotheses that represent the expectations that researchers have.

These may be of the kind "something is going on and I expect it to be like this" or "either

this or that is going on". The formulation and evaluation of informative hypotheses will be

elaborated in this section.

Definition: Informative Hypotheses

Informative hypotheses specify the expected relations between (combinations of) pa-

rameters (e.g., means) and may include effect sizes. In an ANOVA context, that is, the

comparison of two or more independent means, the main building blocks are:

Block 1: equality and order constraints between parameters. This results in constraints

of the form µ1 < µ2, µ1 = µ2, and µ1 > µ2, that is, the mean of Group 1 is smaller

than, equal to, and larger than the mean of Group 2, respectively.

Block 2: equality and order constraints between combinations of parameters. This

results in contraints of, for example, the form µ1−µ2 > µ3−µ4, or µ1+µ2 > µ3+µ4.

Block 3: effect sizes. For example, µ1 > µ2 + .2σ̂, that is, the mean of Group 1 is at

least .2 standard deviations larger than the mean of Group 2.

Block 4: range constraints. These can, for example, replace the traditional null and

alternative hypothesis, e.g., H0 : |µ1−µ2| < .2σ̂ versus Hu : |µ1−µ2| > .2σ̂, where

H0 states that the difference between both means is smaller than .2 standard

deviations (that is, smaller than a Cohen’s, 1992, d of .2) and Hu states that the
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difference is larger than .2 standard deviations.

Using these building blocks hypotheses can be constructed. Examples are:

H1 : µ1 > µ2 > µ3, that is, a complete ordering of means

H2 : µ1 > µ2 & µ1 > µ3, that is, an incomplete ordering of means

H3 : µ11 − µ12 > µ21 − µ22 & µ11 > µ12 & µ11 > µ21, where the indices refer to four means

organized in a 2× 2 factorial design, that is, a precise directional description of an

interaction effect

H4 : µ1 > µ2 + .2σ̂ & µ1 > µ3 + .2σ̂, that is, the first mean is at least .2 standard

deviations larger than the second and third means.

The interested reader is referred to Hoijtink (2012) for a more elaborate discussion and

illustrations (also outside the context of ANOVA models) of informative hypotheses. Note

that, using p-values (Silvapulle and Sen, 2004) one informative hypothesis can be

compared to either the null or the alternative hypothesis. The comparison of two

competing informative hypotheses can not be done with p-values. However, as will be

shown in the next section using the Monin data, this can be done using the Bayes factor

(with and without the inclusion of the null and unconstrained hypotheses).

Analysis of the Monin Data Using Informative Hypotheses

Given the goal of their experiment, it may very well have been that Monin, Sawyer,

and Marques (2008) had the following hypotheses in mind:

H1 : µ1 > µ2 > µ3, that is, the attractiveness of the obedient person (Group 1) is higher

than of the moral rebel with self affirmation (Group 2), which is in turn higher than

the moral rebel with bogus writing task (Group 3).
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H2 : µ1 > µ2 = µ3, that is, the attractiveness of the obedient person (Group 1) is higher

than of the moral rebel (Groups 2 and 3), irrespective of the experimental

manipulation used to self affirm the participants in Group 2.

H3 : µ1 = µ2 > µ3, that is, after self affirmation the attractiveness of the moral rebel

(Group 1) is equal to the attractiveness of the obedient person (Group 2) and both

are more attractive than the moral rebel after a bogus writing task (Group 3).

Hu : anything can be going on, that is, the means are unconstrained.

Running Tutorial Step 10 to evaluate these hypotheses renders the output displayed in

Results 7. As can be seen in the column labeled PMPb, H3 has the highest posterior model

probability (.769) and is therefore the best of the set of hypotheses under consideration.

However, since a preference for H3 comes with Bayesian error probabilities of .11 and .12,

for H1 and Hu, respectively, these hypotheses can not yet be ignored.

Results 7: Evaluating Informative Hypotheses using the Monin Data

Hypothesis testing result

f= f>|= c= c>|= f c BF.c PMPa PMPb

H1 1.000 0.156 1.000 0.168 0.156 0.168 0.921 0.127 0.112

H2 0.000 0.942 0.114 0.500 0.000 0.057 0.001 0.000 0.000

H3 0.367 1.000 0.114 0.500 0.367 0.057 6.433 0.873 0.769

Hu . . . . . . . . 0.120

BF-matrix

H1 H2 H3

H1 1.000 635.530 0.145



BAYES FACTOR 36

H2 0.002 1.000 0.000

H3 6.889 4378.362 1.000

Results 7 will now be used to further elaborate on the information that can be found

in the output from bain.

1. If a hypothesis is specified only using inequality constraints (that is, smaller than

and larger than), the column labeled BF.c contains the Bayes factor of the hypothesis at

hand versus its complement Hc, that is, not the inequality constrained hypothesis at hand.

The complement of H1 : µ1 > µ2 > µ3 contains any set of restrictions between the means

that is not H1. As can be seen BF1c = .921, which implies that there is about equal

support for both hypotheses in the data.

2. If a hypothesis is specified using equality constraints, possibly in addition to

inequality constraints, BF.c = BF.u, that is, the complement hypothesis is equivalent to the

unconstrained hypothesis because the probability that a precise equality constraint hold

equals zero under the unconstrained hypothesis. As can be seen in the column labeled BF.c

(for these hypotheses the label could also have been BF.u) the support in the data for H3

is 6.4 times larger than for Hu.

3. The second table in Results 7 contains the Bayes factors between pairs of

informative hypotheses. For example, BF12 = 635.5 which implies that the support in the

data is 635.5 times larger for H1 than for H2. It can also be seen that BF31 = 6.8 which

implies that the support in the data is 6.8 times larger for H3 than for H1. Note that,

BFii′ = BFiu/BFi′u. For example, BF32 = 6.433/.00148 = 4378.36 (note that in the bain

output .00148 is rounded to .001). However, since for H1 BF1c is presented instead of BF1u,

BF31 can not directly be computed using the Bayes factors in the column labeled BF.c.

4. The posterior probabilities displayed in the column labeled PMPb are obtained

including Hu in the set of hypotheses under investigation. They show at a glance that with

a posterior probability of .769 H3 is the hypothesis receiving the most support and that a

preference for H3 comes with an error probability of .112 + 0 + .120=.232. Another name
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for Hu, which is always included under PMPb, is the "fail safe hypothesis", if none of the

informative hypotheses are supported by the data, both the Bayes factors and posterior

probabilities will express a preference for Hu.

5. The posterior probabilities displayed in the column labeled PMPa are obtained

ignoring Hu. These posterior probabilities are used if the goal is to determine which of two

or more informative hypotheses is the best.

6. The columns labeled f and c contain the relative fit and relative complexity of each

hypothesis. These numbers are of interest for more technically oriented users and not for

those who use bain to evaluate hypotheses. Nevertheless, a few examples will be presented.

For example, BF3u = f3/c3 = .367/.057 = 6.433; and,

BF1c = (f1/c1)/((1− f1)/(1− c1)) = (.156/.168)/(.844/.832) = .921. The numbers in the

first four columns are the fits and complexities dissected into parts belonging to the equality

and inequality constraints, respectively. These numbers have not and will not be discussed

in this tutorial. The interested reader is referred to Gu, Mulder, and Hoijtink (2018).

Considerations When Evaluating Informative Hypotheses

There are a few things to consider when evaluating informative hypotheses:

1. All that has been said about Bayes factor, posterior probabilities, and Bayesian

error probabilities in the context of the evaluation of the null and alternative hypotheses,

also applies to the evaluation of informative hypotheses.

2. It may be that none of the informative hypotheses provides an adequate

description of the population of interest. If that happens, the Bayes factor will prefer the

best of a set of inadequate hypotheses. This can be avoided in two manners. First of all, if

all informative hypotheses are inadequate (the restrictions used to construct the hypothesis

are not supported by the data), the Bayes factor will prefer Hu. Secondly, if an informative

hypothesis Hi is constructed using only inequality constraints, its complement Hc will be

preferred if the constraints used to formulate Hi are not supported by the data.
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3. Keep the set of competing informative hypotheses as small as possible. If there are

three means in an experiment, than, using equality and inequality constraints, many

hypotheses can be constructed, e.g., H1 : µ1 > µ2 > µ3, H2 : µ1 = µ2, µ3, etc. If all these

hypotheses are formulated and evaluated, the Bayes factor will select the hypothesis that

best describes the data and not, as it should be, the hypothesis that best describes the

population from which the data were sampled. This would be antithetical to the goals of

science. Researchers should evaluate a set of a priori formulated plausible theory based

hypotheses and should not go on a quest for the hypothesis that best described the data.

Nothing will be learned by choosing this "best" hypothesis, because the Bayesian error

probability associated with a preference for this "best" hypothesis will be huge (cf. the

section on the costs of evaluating more than two hypotheses presented earlier in this

tutorial).

4. The informative hypotheses under consideration have to be compatible (Mulder,

Hoijtink, and Klugkist, 2010; Gu, Mulder, and Hoijtink, 2018). It is important to note that

bain will give a warning if hypotheses are not compatible. A precise definition of

compatibility will not be given here, only a few common examples of compatible and

incompatible hypotheses will be presented. For example, H0 : µ1 = µ2 = µ3,

H1 : µ1 > µ2 > µ3, and H2 : µ1 < µ2, µ3 are compatible because replacement of each "," and

inequality constraint by an equality constraint renders two constraints: µ1 = µ2 and

µ2 = µ3. Since there is a solution to these equations, e.g., µ1 = µ2 = µ3 = 0, the hypotheses

under consideration are compatible. Analogously, H1 : µ1 − µ2 > µ3 − µ4 and

H2 : µ1 + µ2 > µ3 + µ4 are compatible. If the inequality is replaced by an equality, two

equation result: µ1 − µ2 = µ3 − µ4 and µ1 + µ2 = µ3 + µ4. Again there is a solution to

these equation, e.g., each mean is equal to 0, and therefore, both hypothesis are

compatible. However, H1 : µ1 = 0 and H2 : µ1 > .5 are not compatible. Replacing the

inequality by an equality renders two equations: µ1 = 0 and µ1 = .5, for which a solution

does not exist. Hypotheses have to be compatible, because the solution to the equations
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renders the mean of the prior distribution under Hu (see the left hand figure in the top row

of Figure 1). If a solution cannot be obtained, the prior distribution cannot be specified

and bain cannot be used for the joint evaluation of the hypotheses of interest. Each

hypothesis (e.g., H1 : µ1 = 0 and H2 : µ1 > .5) can be evaluated independently, but the

resulting Bayes factors are not comparable because the unconstrained prior distribution is

different for each hypothesis.

Sensitivity Analysis for Inequality Constrained Hypotheses

When evaluating hypotheses specified using only inequality constraints, the Bayes

factor and posterior probabilities are not sensitive with respect to fraction of information in

the data for each group used to specify to prior variance (Mulder, 2014). This is illustrated

when running Tutorial Step 11. Using subsequently fractions bg, 2× bg, and 3× bg, the

variances of the prior distributions of the means become 6.125, 3.062, and 2.042,

respectively. However, this does not lead to different Bayes factors for H1 : µ1 > µ2 > µ3

versus its complement. Displayed in Results 8 are the testing results that are obtained for

each fraction, that is, the results are the same. The implication is that in the case of

inequality constrained hypotheses there is no discussion about which fraction to use (any

value goes) and a sensitivity analysis is never needed.

Results 8: Sensitivity Analysis: Results Obtained Using Fractions bg, 2× bg,

and 3× bg, to Specify the Variance of the Prior Distribution

Hypothesis testing result

f= f>|= c= c>|= f c BF.c PMPa PMPb

H1 1.000 0.156 1.000 0.168 0.156 0.168 0.921 1.000 0.483

Hu . . . . . . . . 0.517
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Using Bayes Factor for Replication Research

The lack of reproducibilty of psychological research can be addressed by the

execution of replication studies. If a replication study finds the same results as the original

study, the empirical basis for the result is fortified. As is exemplified by the Open Science

Foundation Reproducibility Project Psychology (https://osf.io/ezcuj/), replication

research is currently receiving a lot of attention. The interested reader is referred to

Anderson and Maxwell (2015) and Simonsohn (2015) for methodology for the evaluation of

replication studies. In this section, it will first of all be elaborated how the Bayes factor

can be used in the context of replication studies if the focus is on H0 and Hu (see also, Etz

and Vandekerckhove, 2016). Subsequently, the potential of informative hypotheses for the

evaluation of replication studies will be highlighted.

Using the Bayes Factor to Evaluate H0 and Hu in a Replication Study

Holubar (2015) replicated the study by Monin, Sawyer, and Marques (2008).

Running Tutorial Step 12a renders the descriptives presented in Results 9. As can be seen,

the differences between the means are smaller than the differences between the means from

the Monin data presented in Results 1.

Results 9: Using describeBy to Obtain Descriptives for Holubar

group n mean sd

1 20 0.98 1.20

2 27 0.02 1.88

3 28 0.27 1.72

Running Tutorial Step 12b renders Results 10 which shows that the Bayes factor

resulting from the analysis of the Holubar data is 5.02 in favor of H0. The Bayes factor
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resulting from the analysis of the Monin data was .001 in favor of Hu. Although this is not

a formal evaluation of the replication study, a comparison of the size of both Bayes factors

(one larger than 1, one substantially smaller than 1) suggests that the results obtained

using the Monin data were not replicated using the Holubar data. In other situations,

however, it may very well be less easy to determine from a comparison of the size of both

Bayes whether the results of an original study were successfully replicated or not. In the

next section a better founded procedure to evaluate replication studies will be proposed: i)

translate the results of the original study in an informative hypothesis; followed by ii) use

the data from the replication study to evaluate this informative hypothesis.

Results 10: Using bain to Obtain Bayes Factor for Holubar

Hypothesis testing result

f= f>|= c= c>|= f c BF.c PMPa PMPb

H0 0.111 1.000 0.022 1.000 0.111 0.022 5.023 1.000 0.834

Hu . . . . . . . . 0.166

Evaluating Replication Studies by Means of Informative Hypotheses

As was elaborated when introducing informative hypotheses, the null-hypothesis may

not be the hypothesis that represents the expectations that researchers have. In the context

of replication studies it is almost certain that the null-hypothesis does not represent the

results obtained by the authors of the original study. Monin, Sawyer, and Marquez (2008)

did not find that "nothing is going on", they found that after self affirmation the

attractiveness of the moral rebel is equal to the attractiveness of the obedient person and

both are more attractive than the moral rebel after a bogus writing task. It will now be

shown that informative hypotheses can be used to represent the results of an original

study, which can subsequently be re-evaluated using the results from a replication study.
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Procedure: Evaluating Replication Studies by Means of Informative Hy-

potheses

Step 1. Translate the main results of the original study into an informative hypothesis

Horiginal. In the context of ANOVA models, three building blocks can be used

Block 1. If the original study concluded that two means are equal, use equality

constraints like, for example, µ1 = µ2

Block 2. If the original study concluded that a mean is larger or smaller than

another mean, use inequality constraints like, for example, µ1 > µ2 and

µ1 < µ2

Block 3. If the original study concluded that a mean is, say, (at least) .2 standard

deviations larger than another mean, use components like µ1 = µ2 + .2σ̂ or

µ1 > µ2 + .2σ̂.

Step 2. Choose as competing hypothesesH0 : all the means are equal andHc : notHoriginal,

that is, the complement of Horiginal.

Applying the procedure from the box above to the replication of Monin, Sawyer, and

Marquez (2008) by Holubar (2015) rendered the following hypotheses:

H0 : µ1 = µ2 = µ3

Horiginal : µ1 = µ2 > µ3

Hc : not Horiginal, which in this case is equal to Hu because Horiginal contains an

equality constraint.

Evaluating these hypotheses using the Holubar data and bain (execute Tutorial Step 12c)

rendered Results 11. As can be seen, the Bayes factor favors H0 over Horiginal and Hc,



BAYES FACTOR 43

that is, the hypothesis derived from the results of the original study by Monin, Sawyer, and

Marques (2008) is not corroborated by Holubar (2015). Note that, the Bayesian error

associated with a preference of H0 is .298, which is quite large, implying that the other

hypotheses can not yet be disqualified. Collecting and processing more data by means of

Bayesian updating might render smaller Bayesian error probabilities. Note furthermore,

that the approach presented in this section is only one aspect of the proper evaluation of

replication studies. The interested reader is referred to https://osf.io/3s2zd/ for a

discussion of Holubar (2015) by the first author of Monin, Sawyer, and Marquez (2008).

Results 11: Replicating Monin, Sawyer, and Marquez (2008) using the Hol-

ubar data

Hypothesis testing result

f= f>|= c= c>|= f c BF.c PMPa PMPb

H0 0.111 1.000 0.022 1.000 0.111 0.022 5.023 0.816 0.702

Horiginal 0.120 0.655 0.138 0.500 0.079 0.069 1.134 0.184 0.158

Hu . . . . . . . . 0.140

The bain Package

All the Bayes factors presented in this tutorial have been computed with the R

package bain. In this section it will be elaborated which models can be handled by bain.

The reader is referred to the bain package in which elaborations and instructive examples

are given of how bain should be instructed if ANOVA models and other models are used.

It will be elaborated how the results obtained with bain should be reported, and future

developments will shortly be discussed.
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Which Statistical Models Can be Handled

bain can be used for the evaluation of null, alternative, and informative hypotheses

by means of the Bayes factor in the context of a wide range of statistical models like, for

example, (repeated measures) ANOVA, ANCOVA, (logistic regression), multilevel

modeling, and structural equation modeling (see for an example, Gu, Mulder, Dekovic, and

Hoijtink, 2014). For applications beyond ANOVA the bain contains many examples

containing a description of the model, instructive examples of hypotheses, and annotated R

code showing how to execute the analyses. It concerns: the Bayesian independent groups

(with unequal within group variances) t-test; ANOVA; ANCOVA; multiple regression;

equivalence testing, multiple group logistic regression; multiple regression when the data

contain missing values (Hoijtink, Gu, Mulder, and Rosseel, 2018); repeated measures in a

within-between design; and hypothesis evaluation using a robust Bayes factor in the context

of ANOVA. The whole range of models for which the bain R package can be used for

Bayesian hypothesis evaluation is still being explored. In the future instructive examples

with respect to additional models and applications will be added to the bain package.

Reporting the Results of Analyses with the bain Package

The box below presents the information that should be presented in a research

report. Subsequently, an example, reporting the replication of Monin, Sawyer, and

Marques (2008) by Holubar (2015) will be given in Results 13.

Procedure: Reporting Research Results

The following information should be provided when reporting the results of Bayesian

evaluation of null, alternative, and informative hypotheses.

1. Present the variables of interest.

2. Present the statistical model used.

3. Explain which model parameters are being tested in the hypotheses.
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4. Present estimates of the model parameters, their covariance matrix (per group),

and the sample size (per group). This information can be found in the bain output

before the Bayes factors and posterior probabilities are printed (see Results 12 obtained

after running Tutorial Step 12c). Comparing Results 13 with Results 12 will show where

the relevant numbers can be found in the bain output.

5. Present the hypotheses of interest.

6. Present and interpret the Bayes factors and the posterior probabilities, that is,

report on the Bayesian error probabilities. Comparing Results 13 with Results 11 will

show where the relevant numbers can be found in the bain output.

Results 12: Replicating Monin, Sawyer, and Marquez (2008) using the Hol-

ubar data

Choice of b

J 2

N 20 27 28

b 0.033 0.025 0.024

Estimates and covariance matrix of parameters

Estimates

0.98 0.02 0.27

Posterior Covariance Matrix

[,1] [,2] [,3]

[1,] 0.138 0.000 0.000

[2,] 0.000 0.102 0.000

[3,] 0.000 0.000 0.099
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Results 13: Reporting the Replication of Monin, Sawyer, and Marquez

(2008) using the Holubar data

The variable of interest is attractiveness measured in three groups: 1 - obedient, 2 -

moral rebel with self-affirmation, and 3 - moral rebel with bogus writing task. An

analysis of variance model is used to estimate the mean attractiveness in each of the

three groups. The results are displayed in the table below.

Group Average Variance of Average Sample Size

obedient .98 .138 20

self-affirmation .02 .102 27

bogus writing task .27 .099 28

Three hypotheses will be evaluated:

H0 : µ1 = µ2 = µ3

Horiginal : µ1 = µ2 > µ3

Hu : µ1, µ2, µ3.

The Bayes factors versus Hu and the posterior probabilities (computed assuming equal

prior probabilities) are displayed in the table below.

Hypothesis BF.a posterior probability

H0 5.02 .70

Horiginal 1.13 .16

Hu .14

As can be seen, H0 is supported more than both Horiginal and Hu. The Bayesian error

probability associated with preferring H0 equals .30.
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Future Developments

The development of bain has not reached the end of the line. In the future new

applications will be added to the bain package. Two research projects are currently being

executed. As discussed earlier in this tutorial, the first concerns robust Bayes factors, that

is, robust with respect to the presence of outliers and distributional assumptions. This is

relatively straightforward to implement in the bain framework. All that needs to be done is

replace the parameter estimates and their covariance matrix by their robust counterparts.

One example concerning robust Bayes factors for hypothesis evaluation in the context of

ANOVA models can be found in the bain package (Bosman, 2018). The second project

concerns sample size calculations for Bayesian hypothesis testing. It is expected that in the

summer of 2019 an example concerning sample size calculations when executing the

Bayesian t-test will be added to the bain website. Examples concerning ANOVA,

ANCOVA, and multiple regression are also envisaged. Other topics that deserve further

attention, either by the bain team or by other researchers are: the specification of prior

probabilities beyond the current "default" that a priori each hypothesis is equally likely (for

example, if H0 states that extra sensory perception does not exists while H1 states that

extrasensory perception does exist, it may not be sensible to assign equal prior model

probabilities to both hypotheses); further development and study of Bayesian updating;

and, the specification of prior distributions other than the approach currently implemented.

Furthermore, the Bayesian t-tests, ANOVA, ANCOVA, and multiple regression

(including the option to evaluate informative hypotheses) available in bain are currently

being implemented in JASP (https://jasp-stats.org/). JASP allows users that are not

familiar with the R package (for example bachelor students in the social and behavioral

sciences) to use packages like bain and also Bayesfactor because it has an intuitive

interface which makes it very easy to use.
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Conclusion

A core feature of this tutorial, is that hypotheses with respect to the same set of

parameters (in this tutorial hypotheses with respect to population means) are evaluated

using the Bayes factor. However, in principle, the Bayes factor can also be used in other

situations. Examples are: determining whether an auto-regressive model provides a better

description of longitudinal data than a growth curve model; determining the optimal

number of factors in an exploratory factor analysis; and, determining whether or not a data

point is an outlier. The presentation in this tutorial does not cover those situations and

explanations, interpretations, and applications may be markedly different.

This tutorial was illustrated using the R package bain. However, theory, definitions,

and procedures presented to a large extend also apply if other software packages are used

to compute Bayes factors for the evaluation of null, informative, and alternative

hypotheses. The package BIEMS (Mulder, Hoijtink, and de Leeuw, 2012) that can be found

at https://informative-hypotheses.sites.uu.nl/software/biems/ can be used to

evaluate null, alternative, and informative hypotheses in the context of the multivariate

normal linear model (encompassing, for example, analyses of variance models and linear

regression). The BayesFactor package, see, for example, Rouder et al. (2009), can be

found at https://richarddmorey.github.io/BayesFactor/ and can be used for the

evaluation of null and alternative hypotheses in two and more group analyses of variance,

multiple regression, and contingency tables. The interested reader is furthermore referred

to Boing-Messing et al. (2017), who present an R package that can be used for the

evaluation of hypotheses with respect to variances, Mulder (2016) for a package addressing

correlations, and Dittrich, Leenders, and Mulder (2017) for a package addressing network

autorcorrelations.

Although quite some ground was covered in this tutorial, there will without doubt be

readers with remaining questions or applications that have not been covered. Those

readers are welcome to address their queries to the bain team.
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Figure 1 . An illustration of prior and posterior distribution, complexity and fit. The areas

within the solid circle located within the diagonal band in the middle two figures and below

the diagonal in the right hand figures are the complexities of H1 and H2, respectively. The

corresponding areas within the dashed circle are the fits for H1 (middle two figures within

the diagonal band) and H2 (right hand figures below the diagonal band), respectively.




