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Abstract3

This Teacher’s Corner paper introduces Bayesian evaluation of informative hypotheses for4

structural equation models, using the free open-source R packages bain, for Bayesian5

informative hypothesis testing, and lavaan, a widely used SEM package. The introduction6

provides a brief non-technical explanation of informative hypotheses, the statistical7

underpinnings of Bayesian hypothesis evaluation, and the bain algorithm. Three tutorial8

examples demonstrate informative hypothesis evaluation in the context of common types of9

structural equation models: 1) confirmatory factor analysis, 2) latent variable regression, and10

3) multiple group analysis. We discuss hypothesis formulation, the interpretation of Bayes11

factors and posterior model probabilities, and sensitivity analysis.12
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Teacher’s Corner: Evaluating Informative Hypotheses Using the Bayes Factor in Structural15

Equation Models16

Hypotheses play a central role in deductive, theory-driven, research. A hypothesis17

allows a researcher to draw inferences about a population, based on data sampled from that18

population. In the context of structural equation modeling, there are two commonly used19

approaches to hypothesis evaluation. Firstly, researchers can construct a set of competing20

models, where each model represents several theoretically-derived substantive hypotheses.21

Researchers can then use information criteria to select the best model in the set. Commonly22

used information criteria include Akaike’s information criterion (AIC, Akaike, 1974), the23

Bayesian information criterion (BIC, Schwarz, 1978), and the deviance information criterion24

(DIC, Spiegelhalter, Best, Carlin, & Linde, 2002). Secondly, hypotheses about specific25

parameters within a model can be tested by comparing a null hypothesis against an26

alternative hypothesis using the likelihood ratio test (Wilks, 1938) or the Wald test (Buse,27

1982).28

A third approach is informative hypothesis evaluation (Hoijtink, 2011). Informative29

hypotheses are theoretically-derived statements about directional differences and equality30

constraints between model parameters of interest. Informative hypotheses address an31

important limitation of classical null-hypothesis significance testing: The null-hypothesis32

that a parameter is equal to zero is often a “straw man” hypothesis. It holds little credibility,33

and exists purely for the purpose of being rejected. The researcher’s actual theory, on the34

other hand, is subsumed under a very broad alternative hypothesis, and is not directly35

tested. The paradox inherent in this approach is that rejecting the straw man36

null-hypothesis cannot be interpreted as evidence in support of the researcher’s theory, but37

merely as evidence against the null. Informative hypotheses overcome this counter-intuitive38

limitation, by explicitly testing a researcher’s theoretical beliefs.39

Evaluating informative hypotheses is particularly straightforward from a Bayesian40



BAYES FACTOR 4

perspective. Bayesian inference is already widely applied in the context of multivariate41

normal linear models (see, for example: Well, Kolk, & Klugkist, 2008; Braeken, Mulder, &42

Wood, 2015; Jong, Rigotti, & Mulder, 2017; Zondervan-Zwijnenburg et al., 2019). Methods43

for Bayesian hypothesis evaluation within the structural equation modeling framework are44

also available (Gu et al., 2019a; Van De Schoot, Hoijtink, Hallquist, & Boelen, 2012).45

However, they are less frequently applied (but see Van Lissa, Hawk, Branje, Koot, & Meeus,46

2016). This might be, in part, because user-friendly software was not available. In this47

Teacher’s Corner paper, we show how Bayesian tests of informative hypotheses about48

parameters in structural equation models can easily be conducted in R, using the bain49

package (Gu et al., 2019b; Gu, Mulder, & Hoijtink, 2018; Hoijtink, Gu, & Mulder, 2018;50

Mulder, 2014). From version 0.2.3 on, the package can evaluate informative hypotheses51

about structural equation models estimated with the free, open-source SEM-package lavaan52

(Loehlin & Beaujean, 2016; Rosseel, 2012). For a tutorial and technical details, see Hoijtink53

et al. (2019b).54

Formulating Informative Hypotheses55

Informative hypotheses are formulated in terms of equality (=) and inequality (<, >)56

constraints between target parameters. For example, one might hypothesize that one57

regression coefficient is greater than the another, H1 : β1 > β2, or that both are equal to a58

specific value, H2 : (β1, β2) = 0.6, or that one is greater than the other, which in turn is equal59

to zero, H3 : β1 > β2 = 0. The bain package uses a simple syntax to specify such hypotheses,60

which is explained in detail in the package vignette. Here, we provide a brief overview of the61

syntactical elements that are relevant in the context of structural equation models:62

• s1, ..., s6: Refers to the target parameters s1 up to s6. Substitute these with the63

names of parameters in your model.64

• s1 = c: An equality constraint, indicating that parameter s1 is equal to constant c65

• s1 > c: An inequality constraint, indicating that parameter s1 is larger than constant66

https://informative-hypotheses.sites.uu.nl/software/bain/
https://informative-hypotheses.sites.uu.nl/software/bain/
https://informative-hypotheses.sites.uu.nl/software/bain/
www.lavaan.org
https://cran.r-project.org/web/packages/bain/vignettes/Introduction_to_bain.html
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c67

• s1 = s2 = s3: Three parameters have equal values.68

• (s1, s2, s3) > 0: Three parameters, grouped by parentheses, are greater than zero.69

• c1 * s1 + c2 < c3 * s2 + c4: A linear transformation of s1 (where a constant is70

added to, or multiplied with, s1) is smaller than with a linear transformation of s2.71

• ... & ...: Within one hypothesis, the ampersand connects two constraints.72

• ... ; ...: The ; separates two distinct informative hypotheses.73

When writing informative hypotheses about parameters of a lavaan model,74

parameters can be referenced by name. These names should be (unique abbreviations of) the75

parameter names used by lavaan. For example, lavaan labels the factor loading of the76

indicator Ab on the latent variable A as A=~Ab. This label, "A=~Ab", can be referenced77

verbatim in bain syntax, as in "A=~Ab > .6".78

Note that comparing parameters (usually) makes sense only if they are on the same79

scale. For example, imagine that income is predicted by IQ and SES, where IQ is measured80

using a normed test (M = 100, SD = 15), and SES is rated on a 10-point ordinal scale81

which we treat as continuous. The regression coefficients for these predictors are βIQ and82

βSES, respectively. Since IQ and SES are measured on different scales, the hypothesis that83

βIQ < βSES is meaningless. The unstandardized coefficients reflect both the strength of the84

relation of the predictors with income, and the scale with which the predictors were85

measured. The hypothesis does make sense with regard to the standardized model estimates,86

however. As a counterexample, if family income is predicted by maternal and paternal87

working hours, then the regression coefficients are on the same scale (dollars per hour of88

work), and can be directly compared. These examples illustrate that, except when89

comparing predictors measured on the same scale, or in other exceptional situations, it is90

usually safer to apply bain only to standardized model parameters.91
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Bayesian Hypothesis Evaluation92

One of the key features of the Bayesian approach is that p-values, common to93

null-hypothesis significance testing, are dispensed with. Instead, hypotheses are evaluated94

using the Bayes factor (Kass & Raftery, 1995). The Bayes factor quantifies the relative95

support provided by the data for two competing hypotheses. For example, let Hi be an96

informative hypothesis that describes some (in)equality constraints among model parameters.97

Let Hu be an unconstrained hypothesis that places no constraints on these model98

parameters. The Bayes factor BFiu, quantifies the support in favor of Hi relative to Hu. If99

this Bayes factor BFiu is larger than 1, the data provide more support for Hi than for Hu. If100

it is smaller than 1, the data provide more support for Hu than for Hi. A Bayes factor near 1101

is indecisive; both hypotheses are equally supported. The Bayes factor can be inverted to102

express support in favor of Hu, relative to Hi. To this end, one can compute BFiu as 1/BFui.103

Thus, if BFiu = 8.11, then we can conclude that the data provide 8.11 times more support104

for Hi than for Hu. Conversely, BFui (note that the order of the indices has changed) would105

be 1/8.11 = .12.106

Since the Bayes factor is a relative measure of support, it should not be compared to a107

threshold value. If, for example, BFiu = 102.75 it is clear that the data provides108

overwhelming support for Hi over Hu. With smaller values, such as BFiu = 7.34, a109

preference for Hi can still be defended, but other researchers might debate this preference,110

and with even smaller values, such as BFiu = 3, there is a preference for Hi, but Hu is111

definitely not disqualified. Thus, the Bayes factor can, and should, be interpreted on a112

continuous scale. This also sets it apart from the dichotomous decision making imposed by113

the p-value. It is up to the scientific community to decide when “enough” evidence is114

obtained to completely rule out a hypothesis. For a more elaborate discussion of Bayesian115

hypothesis evaluation using bain, not specific to structural equation modeling, see the116

tutorial by (Hoijtink et al., 2019b).117
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Statistical underpinnings. The Bayes factor BFiu can be written as a ratio of two118

marginal likelihoods of the hypotheses given the data (m), or alternatively, as the ratio of119

“fit” (fi) and “complexity” (ci, Gu, Mulder, & Hoijtink, 2018):120

BFiu = m(Hi | data)
m(Hu | data) = fi

ci

.

The notion of fit reflects the extent to which the data is in agreement with the restrictions121

specified in the hypothesis, and its complexity reflects how specific the hypothesis is (Gu,122

Mulder, & Hoijtink, 2018). This ratio of fit and complexity is a concept that is also reflected123

in information criteria such as the AIC (Akaike, 1974) and the DIC (Spiegelhalter et al.,124

2002).125

The bain algorithm estimates fit and complexity based on normal approximations of126

the prior and posterior distributions for the target parameters of the hypothesis. These127

distributions have a known mean and covariance matrix (Gu et al., 2018; Hoijtink et al.,128

2018). The posterior is defined by the observed parameter estimate and their asymptotic129

covariance matrix. For hypotheses with only inequality constraints, the fit (fi) is then given130

by the proportion of this posterior distribution that is in agreement with the hypothesis (Gu131

et al., 2018; Hoijtink et al., 2018). For hypotheses with equality constraints, the fit is defined132

in terms of the posterior density at the constraints.133

The prior distribution is constructed to provide an adequate quantification of134

complexity (see Gu, Mulder, & Hoijtink, 2018; Hoijtink, Gu, & Mulder, 2019). This is135

achieved by setting the prior mean along the boundary of the hypotheses under136

consideration. The prior covariance matrix is a scaling transformation of the posterior137

covariance matrix. Scaling increases the variances, leading to a flatter distribution. By138

default, bain scales the covariance matrix to be as flat as it would have been if it were based139

on the smallest possible sample required to estimate the target parameters. This is based on140

the concept of a minimal training sample (Berger & Pericchi, 2004; Mulder, 2014; O’Hagan,141

1995). Thus, the prior covariance matrix is much flatter, and therefore less informative, than142
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the posterior. The complexity (ci) is given by the proportion (for inequality constrained143

hypotheses) or density (for equality constrained hypotheses) for the region of the prior144

distribution that is in agreement with the hypothesis.145

Evaluating a single informative hypothesis. One way to evaluate a single146

informative informative hypothesis is to compare it with an “unconstrained” hypothesis, as147

in the preceding paragraphs. Let Hi signify any informative hypothesis that describes some148

(in)equality constraints among model parameters, such as Hi : β1 > β2, or Hi : β1 > β2 = 0.6.149

The unconstrained hypothesis Hu places no constraints on these model parameters:150

Hu : β1, β2. The Bayes factor BFiu then quantifies the relative support provided by the data151

in favor of the informative hypothesis, relative to the unconstrained hypothesis - or in other152

words, how likely is it that the specified parameter constraints are true, relative to any other153

ordering of parameters. Throughout this paper, we use the notation BF.u to refer to Bayes154

factors of this type in the general sense, where . signifies any informative hypothesis.155

A second way to evaluate support in favor of an informative hypothesis, is to compare156

it to its complement. The complement is an alternative hypothesis that covers every ordering157

of parameter values that is not in line with the original hypothesis. If the informative158

hypothesis Hi expresses “the researcher’s theory”, and ! represents logical negation (“not”),159

then the complement Hc : !Hi means “not the researcher’s theory”. Comparing against the160

complement allows researchers to investigate whether their expectation is, or is not,161

supported by the data. Bayes factor of the type BF.c indicate whether the data provide more162

support in favor of, or against, an informative hypothesis. In principle, the complement is163

defined by reference to a specific informative hypothesis, such that the complement of H1 is164

!H1, and the complement of H2 is !H2. For hypotheses with at least one equality constraint,165

however, the unconstrained hypothesis and the complement are the same. Since version166

0.2.4, bain reports both BF.u and BF.c by default.167

It is worth pointing out that alternative, non-Bayesian methods exist that compare168

informative hypotheses against the null-hypothesis (Vanbrabant, Van De Schoot, Van Loey,169
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& Rosseel, 2017; Van De Schoot, Hoijtink, & Deković, 2010). When using bain, it is also170

possible to evaluate the null-hypothesis by specifying it as an informative hypothesis (i.e., a171

hypothesis that constrains all parameters to be equal to zero, or to be equal to one another),172

and comparing it with other informative hypotheses using the approach elaborated in the173

next paragraph.174

Comparing two informative hypotheses. A second question researchers might175

want to address, is which of two informative hypotheses, H1 and H2, is most supported by176

the data. The Bayes factor BF12 reflects the amount of support provided by the data in177

favor of H1, relative to H2. It is computed by taking a ratio of two other Bayes factors:178

BF12 = BF1u

BF2u

This approach is valid because Bayes factors for any two informative hypotheses can be179

compared if both have the same denominator. In the previous section, we explained that it is180

not possible to compare Bayes factors of the type BF.c, because the complement of H1 is not181

the same as that of H2. However, Bayes factors of the type BF.u are comparable, because182

the unconstrained hypothesis is identical for all informative hypotheses. Thus, BF12 can be183

computed to contrast a pair of user-specified informative hypotheses.184

By default, bain will compute Bayes factors to contrast all informative hypotheses.185

Thus, given three hypotheses, H1 : β1 = β2 = β3 = 0, H2 : β1 > 0 & β2 > 0 & β3 > 0, and186

H3 : β1 > β2 > β3 > 0,bain will compute BF12, BF13, and BF23. These Bayes factors are187

stored in the $BFmatrix element of the output.188

Comparing more than two hypotheses. Any two informative hypotheses can be189

straightforwardly compared using the method outlined above. When there are more than190

two candidate hypotheses, however, comparing all of their mutual Bayes factors quickly191

becomes cumbersome. In this case, it is easier to compare the so-called posterior model192

probabilities for each hypothesis Hi, that is, P (Hi|data). Each posterior model probability193

has a value between 0 and 1, and the posterior model probabilities for a set of hypotheses194
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sum to 1.0. Under the assumption that, a priori (before observing the data), each hypothesis195

is equally likely, the posterior model probabilities contain the same information as the Bayes196

factors upon which they are based. If, for example, BF12 = 3.5, BF13 = 7.0 and BF23 = 2.0,197

the corresponding posterior model probabilities are P (H1|data) = .7, P (H2|data) = .2, and198

P (H3|data) = .1, respectively. Note that, BF12 = P (H1|data)
P (H2|data)

= .7
.2 = 3.5. Posterior model199

probabilities can also be interpreted as Bayesian error probabilities. If the set of hypotheses200

under consideration contains H1, H2, and H3, and the corresponding posterior model201

probabilities are .7, .2, and .1, respectively, then the Bayesian error probability associated202

with a preference for H1 is equal to .2 + .1 = .3.203

A fail-safe hypothesis. It is important to emphasize that posterior model204

probabilities only indicate which of the hypotheses in the set receives the most support from205

the data. Consequently, if all of the hypotheses in the set misrepresent the true relationship206

among parameters in the population, then researchers risk selecting the best of a set of “bad”207

hypotheses. Two approaches can be used to mitigate this risk. The first approach uses the208

unconstrained hypothesis Hu as a “fail-safe” hypothesis. Recall that Hu places no209

constraints on the parameters. If the best hypothesis in the set receives more support than210

the unconstrained hypothesis, we are reassured that it is not just the best of a set of bad211

hypotheses. This approach is currently implemented in bain. The second approach would be212

to include a hypothesis that is the complement of the union of all informative hypotheses in213

the set. A nice feature of this second approach is that, whereas Hu overlaps with each of the214

hypotheses under consideration, the complement of the union does not. However, as to yet215

this option is not implemented in bain.216

Structural Equation Modeling Using lavaan217

In this paper, we present a subset of the (multiple group) structural equation models218

that can be specified using the lavaan function sem, and for which informative hypotheses219

can be formulated and processed with bain. The interested reader is advised to visit220
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http://lavaan.org/, where mini-tutorials and examples are used to explain all the functions221

and options available in the lavaan package. For a general introduction to structural222

equation modeling, the interested reader is referred to Loehlin and Beaujean (2016). As will223

be elaborated upon in the discussion, it is relatively easy to use bain for the evaluation of224

hypotheses for all models that can be specified in lavaan.225

When used in conjunction with lavaan, bain extracts the (standardized or226

unstandardized) target parameter estimates (per group), the covariance matrix of the227

estimates (per group) and the sample size (per group) from the lavaan output object.228

Target parameters are defined as model parameters about which informative hypotheses are229

formulated. By contrast, nuisance parameters are parameters not involved in the hypotheses230

of interest. bain is validated for use with target parameters that are either 1) regression231

coefficients, 2) intercepts, or 3) factor loadings. Thus, by default, all (residual) (co)variances232

are treated as nuisance parameters, along with any remaining parameters not involved in the233

hypotheses.234

A final note regarding assumptions: As explained earlier, bain constructs a default235

prior distribution for the target parameters (per group), and derives a normal approximation236

of the posterior. Asymptotically, the posterior distribution is indeed normal (see, for237

example, Gelman et al., 2013, Chapter 4). However, bain should only be used if238

approximate normality can be assumed, given the sample size. Rosseel (2020) provides239

references that validate the use of structural equation modeling when the sample size is at240

least 200. This approximate prior and posterior form the basis for the computation of Bayes241

factors for the informative hypotheses. A more detailed accessible introduction is presented242

in Hoijtink et al. (2019b), and the statistical underpinnings of the method are substantiated243

in Gu et al. (2018) and Hoijtink et al. (2018).244

http://lavaan.org/
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Tutorial examples245

We present tutorial examples for three commonly used types of structural equation246

models: 1) confirmatory factor analysis, 2) latent variable regression, and 3) multiple group247

analysis. Each example follows a three-step workflow. In the first step, lavaan is used to248

estimate the parameters of a structural equation model. In the second step, one or more249

informative hypotheses are formulated. In the third step, the results of the lavaan analysis250

and the hypotheses are fed into bain, which renders a Bayesian evaluation of the hypotheses,251

returning Bayes factors and posterior model probabilities.252

All examples use the synthetic data set “sesamesim”, which is included with the bain253

package. These data are generated to have similar distributional characteristics and254

covariances to the Sesame Street data provided by Stevens (2012). These data concern the255

effect of watching the tv-series “Sesame Street” for one year on the knowledge of numbers of256

240 children aged between 34 to 69 months. We will use the following variables: Age in257

months (age), the Peabody test, which measures the “mental age” of children (peabody;258

score range 15 to 89), and sex, with boys coded as 1, and girls as 2. Several variables were259

measured both before- and after watching Sesame Street for one year: Knowledge of260

numbers (Bn: before, and An: after); knowledge of body parts (Bb and Ab, respectively),261

letters (Bl and Al), forms (Bf and Af), relationships (Br and Ar), and classifications (Bc and262

Ac). Models are fit using lavaan, and Figures are plotted using tidySEM (Van Lissa, 2020).263

Example 1: Confirmatory Factor Analysis264

A two-factor confirmatory factor analysis is specified using the syntax below, in which265

the A(fter) measurements of all subtests load on the factor A, and the B(efore)266

measurements load on the factor B (see Figure 1).267

model1 <- 'A =~ Ab + Al + Af + An + Ar + Ac

B =~ Bb + Bl + Bf + Bn + Br + Bc'
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fit1 <- sem(model1, data = sesamesim, std.lv = TRUE)

The argument std.lv = TRUE implies that the model is identified by standardizing268

the latent variables B and A. This allows the formulation of informative hypotheses with269

respect to each of the factor loadings, including the first.270

Specifying informative hypotheses. One plausible hypothesis for this271

confirmatory factor analysis might be that indicators are strongly related to the factors to272

which they are assigned. This is reflected by the following hypothesis, which states that all273

(standardized) factor loadings are larger than .6:274

hypotheses1 <- "(A=~Ab, A=~Al, A=~Af, A=~An, A=~Ar, A=~Ac) >.6 &

(B=~Bb, B=~Bl, B=~Bf, B=~Bn, B=~Br, B=~Bc) >.6"

This example consists of one hypothesis about two groups of parameters, enclosed by275

parentheses, which are chained by the ampersand symbol. Note that, although we could276

group all loadings between brackets, before and after are separated for clarity. In this277

example, the target parameters are factor loadings, the sample size is N = 240, and therefore,278

we assume that the posterior distribution of the target parameters is approximately normal.279

Evaluating hypotheses. Now, we will evaluate the informative hypotheses for this280

example using bain(). As input to the function, we use the lavaan output object fit1 and281

the hypotheses hypotheses1 that were specified above. The argument standardize =282

TRUE ensures that the hypotheses are evaluated in terms of standardized model parameters.283

Before calling bain(), we set a seed for the random number generator using284

set.seed(). This is necessary to ensure computational replicability, because bain draws285

random samples from the prior and posterior distributions of the target parameters. If286

another seed is used, a different random sample will be drawn, which could lead to287

differences in the resulting Bayes factors and posterior model probabilities. These differences288
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should be negligible, and it is good practice to conduct a sensitivity analysis for Monte Carlo289

error (the variability due to different random seeds) by changing the seed to ensure that the290

results are replicated.291

set.seed(100)

results1 <- bain(fit1, hypotheses1, standardize = TRUE)

results1

The resulting bain() output is presented in Table 1. The Bayes factor BF1c, which292

compares H1 to its complement, is found on the row for H1, in column BF.c. As can be seen,293

BF1c = 93.33, that is, the data offers overwhelming support in favor of H1. This is not294

surprising when we examine the parameter estimates and their 95% central credible intervals295

using the summary() function (see Table 2).296

summary(results1)

In agreement with H1, all observed standardized loadings are larger than .6. Note that,297

a preference for H1 compared to Hu comes with a Bayesian error probability of .01: A 1%298

probability that the choice for H1 is incorrect, conditional on the set of models (see Table 1).299

Example 2: Latent Regression300

A latent regression model is specified using the code below. The measurement model301

for the factors B and A is the same as in Example 1. In this example, however, the302

correlation from the preceding example is replaced by a regression coefficient. Moreover, age303

and peabody are included as observed covariates. This analysis thus allows us to investigate304

whether children’s knowledge after watching Sesame Street for a year is predicted by their305

knowledge one year before, as well as by their biological- and mental age.306
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model2 <- 'A =~ Ab + Al + Af + An + Ar + Ac

B =~ Bb + Bl + Bf + Bn + Br + Bc

A ~ B + age + peabody'

fit2 <- sem(model2, data = sesamesim, std.lv = TRUE)

Specifying informative hypotheses. This example contains three hypotheses,307

separated by semicolons, regarding the relative importance of B, age, and peabody when308

predicting A:309

hypotheses2 <- "A~B > A~peabody = A~age = 0;

A~B > A~peabody > A~age = 0;

A~B > A~peabody > A~age > 0"

H1 specifies that the regression coefficient of B on A is greater than zero, and that the310

coefficients of age and peabody on A are equal to zero. H2 specifies that the regression311

coefficient of B on A is greater than that of peabody on A, which in turn is bigger than that312

of age on A, which is equal to zero. H3 specifies that the coefficient of B on A is greater than313

that of peabody on A, which, in turn, is greater than that of age on A, which is greater than314

zero.315

Evaluating hypotheses. The code below evaluates the hypotheses specified for the316

latent regression example:317

set.seed(748)

results2 <- bain(fit2, hypotheses2, standardize = TRUE)

The results are reported in Table 3. When H1, H2, and H3 are compared to their318

respective complements, there is substantial support for H1, somewhat less for H2, and319

substantially less support for H3. The posterior model probabilities, PMPb, help determine320
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which of the three informative hypotheses is the best of the set, and whether the321

unconstrained hypothesis Hu holds any credulity. Supported by a posterior model322

probability of .79, H1 appears to be the best of the set of hypotheses. However, a choice for323

H1 implies a Bayesian error probability of .17 + .03 + .01 = .21, that is, it would be unwise324

to ignore the possibility that another hypothesis (especially H2) might also be a good325

candidate. It is clear that the regression coefficient of B is larger than zero, but maybe the326

regression coefficient of peabody is also larger than zero. We can see how these findings327

relate to the model parameters by calling summary() on the bain object (see Table 4).328

Example 3: Multiple Group Analysis329

This example demonstrates how to evaluate informative hypotheses about freely330

estimated parameters across groups in a multi-group structural equation model. It is331

important to emphasize that the Bayes factor implemented in bain is only valid for multiple332

group models without any between-group parameter constraints. The reason is that bain333

requires a separate asymptotic covariance matrix for the parameters of each group. This is334

only possible when no between-group constraints are imposed, because then (and only then)335

is the asymptotic covariance matrix block-diagonal, and can we extract a covariance matrix336

per group. For more information, see Hoijtink, Gu, and Mulder (2018). A multiple group337

model can be estimated by specifying a grouping variable in the call to sem. The code below338

runs an analysis in which the parameters of a regression model are estimated separately for339

boys and girls. The model predicts knowledge of numbers after watching Sesame Street for a340

year based on prior knowledge of numbers, and the peabody mental age test (see Figure 2).341

model3 <- ' postnumb ~ prenumb + peabody '

# Assign labels to the groups to be used when formulating hypotheses

sesamesim$sex <- factor(sesamesim$sex, labels = c("boy", "girl"))

# Fit the multiple group structural equation model

fit3 <- sem(model3, data = sesamesim, group = "sex")
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Specifying informative hypotheses. For the multiple group (boys versus girls)342

structural equation model, we evaluate two hypotheses: That standardized regression343

coefficients are equal for boys and girls (H1), or that they are smaller for boys as compared344

to girls (H2). In other words, are number knowledge before and the peabody test better345

predictors of number knowledge after for girls than for boys?346

hypotheses3 <- "postnumb~prenumb.boy = postnumb~prenumb.girl &

postnumb~peabody.boy = postnumb~peabody.girl;

postnumb~prenumb.boy < postnumb~prenumb.girl &

postnumb~peabody.boy < postnumb~peabody.girl"

Evaluating hypotheses. The results, displayed in Table 5, indicate that H1347

receives 41.20 times more support from the data than its complement. Conversely, H2348

received 1/.16 = 6.25 times less support than its complement. These results indicate that the349

predictability of “postnumb” does not depend on gender. This is also reflected by the350

posterior model probabilities that show that a decision in favor of H1 comes with a Bayesian351

error probability of only 0.02.352

set.seed(235)

results3 <- bain(fit3, hypotheses3, standardize = TRUE)

This conclusion is corroborated by the model coefficients, obtained by running353

summary(results3). As seen in Table 6, the credible intervals for the regression coefficients354

for boys and girls show substantial overlap.355

Further extensions356

Sensitivity Analysis357

Bayes factors for hypotheses containing at least one equality constraint are sensitive to358

the scaling factor used to construct the prior distribution. Recall that the default scaling359



BAYES FACTOR 18

factor in bain is based on the notion of a minimal training sample; the smallest sample size360

required to estimate the target parameters. This default scaling factor is set by the default361

argument fraction = 1 in the call to bain(). A default argument does not need to be362

specified, but can be changed manually by specifying a different value. The smallest possible363

scaling factor is the default, 1. Larger scaling factors increase confidence in the prior, making364

it more concentrated and less spread out. Thus, specifying fraction = 2 raises the scaling365

factor to twice the size of the minimal training sample, and fraction = 3 to thrice the size.366

The reason hypotheses containing at least one equality constraint are sensitive to the367

scaling factor is that equality constraints are represented as a fixed-width “slice” of the368

parameter space around the constraint value (in technical terms, the point density at this369

value). If the width of the prior changes, the ratio of the fixed-width slice to the overal width370

of the prior changes. Hypotheses specified using only inequality constraints are not sensitive371

to the scaling factor, because these constraints divide the parameter space (like cutting the372

distribution into two halves). As the width of the prior changes, the space on both sides of373

the constraint decreases commensurately, so their ratio remains the same (see Hoijtink et al.,374

2019b for a full explanation).375

It is possible to conduct a sensitivity analysis to examine how sensitive the Bayes376

factors are to the scaling factor. The convenience function bain_sensitivity() accepts a377

vector argument called fractions = ..., and returns a list of bain objects. The378

summary() function for this sensitivity analysis accepts an argument which_stat, that can379

be used to request a sensitivity analysis table for a specific statistic (by default, this is the380

“BF”). Below, we demonstrate how to conduct a sensitivity analysis, based on Example 2:381

set.seed(753)

results_sens <- bain_sensitivity(fit2, hypotheses2, fractions = c(1, 2, 3),

standardize = TRUE)

summary(results_sens)
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The results are presented in Table 7. It shows that the value of BF3c is invariant,382

whereas BF1u and BF2u decrease as the scaling factor increases. The posterior model383

probabilities change accordingly, as can be seen in Table 8.384

summary(results_sens, which_stat = "PMPb")

The remaining question is how to deal with the sensitivity of the Bayes factor to the385

scale factor. There are three potential courses of action. Firstly, if all hypotheses under386

consideration are formulated using only inequality constraints, the Bayes factors are387

invariant, as can be seen from BF3c in Table 8. Secondly, if the hypotheses contain equality388

constraints, researchers can rely on the default scaling factor implemented in bain. The389

resulting Bayes factors tend to favor hypotheses with equality constraints over their390

complement. This approach ensures that the evidence in the data has to be compelling391

before it is concluded that the constraints do not hold. When applied to null-hypotheses (i.e.,392

an equality constrained hypothesis stating that a parameter is equal to zero), this393

conservative approach curtails the false positive rate. This is appropriate, especially in the394

context of the replication crisis (see, for example, Open Science Collaboration, 2015).395

Thirdly, researchers can execute a sensitivity analysis, as in the preceding example:396

Empirically investigate the sensitivity of the Bayes factors to the scaling factor, and report397

the results. In our experience, conclusions are usually robust with respect to different values398

of the scaling factor. This can also be seen in Table 7: Although the Bayes factor for H1399

decreases from 150.87 to 50.29, the conclusion remains that H1 is substantially more400

supported than Hc. Furthermore, in terms of posterior model probabilities, the conclusion401

remains that H1 is the best hypothesis, and that H2 cannot be ruled out.402

Experimental applications403

The examples above all use the standard interface of the bain() function, which404

requires two arguments: A model object, and a hypothesis. This interface accepts all lavaan405
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model objects generated by the functions cfa, sem, and growth. Within these models,406

parameters may be fixed, and data may be categorical, and hypotheses can be formulated407

with respect to intercepts, factor loadings, and regression coefficients. Some situations that408

cannot currently be handled by bain include multilevel models (specified using the cluster409

argument), and defined parameters, such as indirect effects in mediation models. If a410

researcher wishes to circumvent the standard user interface, bain() can be applied to a411

named vector of parameters, instead of one of one of the model types for which methods412

exist. This approach calls the default method of bain, which is less user-friendly, but more413

flexible than the model-specific interface. Section 4.i in the bain package vignette illustrates414

this approach, and demonstrates how to manually extract the target parameter estimates415

and place them in a named vector, and how to obtain the parameter covariance matrix and416

sample size from a lavaan object. This vignette can be loaded by calling417

vignette("bain_introduction", package = "bain"). Note that non-standard418

applications of bain that have not yet been validated should be identified as such, or419

substantiated with a simulation study.420

Discussion421

This Teacher’s Corner paper introduced Bayesian hypotheses evaluation for structural422

equation models using bain and lavaan. The combination of both R packages enables the423

free, open-source, and user friendly evaluation of informative hypotheses for structural424

equation models. The approach elaborated in this paper uses Bayes factors, which are a425

measure of relative support for two hypotheses. The interpretation of Bayes factors is426

straightforward: It is a ratio of evidence in favor of one hypothesis, relative to evidence in427

favor of another hypothesis. Bayes factors can be indecisive; the closer Bayes factors get to428

one, the less differential support was found for either hypothesis. It is up to the scientific429

community to decide how much evidence is sufficient evidence.430

The advocated approach allows users to evaluate support for a single informative431
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hypothesis, either relative to its complement, or relative to an unconstrained hypothesis.432

The Bayes factor BF.c compares against the complement, and expresses how much evidence433

the data provides is in favor of “the theory”, as compared to “not the theory”. The Bayes434

factor BF.u compares against the unconstrained hypothesis, and expresses how much435

evidence the data provides is in favor of “the theory”, as compared to “any ordering of436

parameters”. Two informative hypotheses can be compared by computing their joint Bayes437

factor, which is a ratio of the two BF.us for these hypotheses.438

When simultaneously evaluating more than two hypotheses, it is convenient to use the439

posterior model probabilities. These quantify the proportion of support for each hypothesis440

in a set, conditional on the data. This was illustrated in Example 2. Bayesian error441

probabilities additionally quantify the uncertainty of decisions about hypotheses. The442

probability that a preference for one hypothesis in the set is incorrect, is equal to the sum of443

posterior model probabilities for the other informative hypotheses. This is a conditional444

probability, that is, conditional on the available data and the hypotheses in the set.445

Structural equation models are often estimated on data that contain missing values.446

Fortunately, the Bayes factor implemented in bain can also be computed if the data contain447

missing values (Gu et al., 2019a; Hoijtink et al., 2019a). Users can use multiple imputation448

(Van Buuren, 2018) to obtain estimates of the (standardized) target parameters, their449

covariance matrix, and the effective sample size, and once those are available, bain be used450

for the evaluation of informative hypotheses. The interested reader is referred to the vignette451

included with the bain package, which includes an elaborate example.452

Several potential limitations remain. One such limitation is the fact that bain utilizes453

normal approximations of the prior and posterior distribution. This could have implications454

for quantities whose sampling distribution is known to be non-normally distributed, such as455

indirect effects (MacKinnon, Lockwood, & Williams, 2004). However, this problem is averted456

by the fact that users are currently prevented from using the lavaan interface to bain for457
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derived parameters, which includes indirect effects. A second limitation is the fact that bain458

cannot handle multiple group models with between-group constraints. Substantial future459

research is required to overcome this issue. An implication of this limitation is that it is not460

possible to impose measurement invariance in multiple group latent variable models. One461

potential solution, that can already be applied, is to use linear transformations within the462

bain hypotheses to ensure that parameters are comparable across groups. However, this463

procedure is complicated and beyond the scope of this tutorial. Pending a future publication464

addressing measurement invariance, researchers can contact the authors to obtain support465

for such analyses.466

In conclusion, bain enables user-friendly Bayesian evaluation of informative hypotheses467

for structural equation models estimated in lavaan. The method has been validated for468

regression coefficients, factor loadings, and intercepts, in a range of commonly specified469

structural equation models, such as factor analyses, latent regression analyses, multi-group470

models, and latent growth models. Its functionality will be further expanded in future471

updates, and the default method for named vectors offers the freedom to explore applications472

not currently covered by the standard interface.473
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Table 1

Bain output for the Confirmatory Factor Analysis

Model

Fit Com BF.u BF.c PMPa PMPb

H1 0.88 0.01 93.33 762.05 1.00 0.99

Hu 0.01

Note. PMP: Posterior model probabilities; PMPa

excludes Hu; PMPb includes Hu.
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Table 2

Standardized parameter estimates for the confirmatory factor

analysis

Parameter Estimate A CI A Estimate B CI B

b 0.71 [0.64, 0.78] 0.77 [0.71, 0.82]

l 0.81 [0.76, 0.86] 0.65 [0.57, 0.73]

f 0.84 [0.79, 0.88] 0.81 [0.76, 0.86]

n 0.91 [0.88, 0.94] 0.89 [0.85, 0.92]

r 0.70 [0.63, 0.77] 0.72 [0.65, 0.79]

c 0.87 [0.84, 0.91] 0.83 [0.78, 0.87]

Note. CI: Credible interval.

Table 3

Bain output for the latent regression model

Fit Com BF.u BF.c PMPa PMPb

H1 69.90 0.46 150.87 150.87 0.80 0.79

H2 2.96 0.09 33.16 33.16 0.17 0.17

H3 0.07 0.01 5.64 6.01 0.03 0.03

Hu 0.01

Note. PMP: Posterior model probabilities; PMPa

excludes Hu; PMPb includes Hu.
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Table 4

Standardized parameter estimates for latent

regression

Parameter Estimate CI

13 A~B 0.79 [0.73, 0.85]

14 A~age 0.00 [-0.09, 0.09]

15 A~peabody -0.02 [-0.11, 0.08]

Note. CI: Credible interval.

Table 5

Bain output for the latent regression model

Fit Com BF.u BF.c PMPa PMPb

H1 7.79 0.19 41.20 41.20 1.00 0.97

H2 0.02 0.11 0.18 0.16 0.00 0.00

Hu 0.02

Note. PMP: Posterior model probabilities; PMPa

excludes Hu; PMPb includes Hu.

Table 6

Parameter estimates for the multiple group model

Parameter Estimate boy CI boy Estimate girl CI girl

postnumb~prenumb 0.53 [0.38, 0.68] 0.64 [0.52, 0.76]

postnumb~peabody 0.23 [0.07, 0.40] 0.06 [-0.09, 0.22]

Note. CI: Credible interval.
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Table 7

Sensitivity analysis for the Bayes

factors (BF) of the latent

regression model

Fraction H1 H2 H3

1.00 150.87 36.69 6.84

2.00 75.44 25.94 6.84

3.00 50.29 21.18 6.84

Table 8

Sensitivity analysis for posterior

model probabilities (PMPb) of the

multiple group model

Fraction H1 H2 H3 Hu

1.00 0.77 0.19 0.03 0.01

2.00 0.69 0.24 0.06 0.01

3.00 0.64 0.27 0.08 0.01
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Figure 1 . Confirmatory factor analysis
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Figure 2 . Multiple group analysis
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