Equation Models

2

3 Abstract

4 This Teacher's Corner paper introduces Bayesian evaluation of informative hypotheses for

- 5 structural equation models, using the free open-source R packages bain, for Bayesian
- 6 informative hypothesis testing, and lavaan, a widely used SEM package. The introduction
- 7 provides a brief non-technical explanation of informative hypotheses, the statistical
- 8 underpinnings of Bayesian hypothesis evaluation, and the bain algorithm. Three tutorial
- 9 examples demonstrate informative hypothesis evaluation in the context of common types of
- structural equation models: 1) confirmatory factor analysis, 2) latent variable regression, and
- 11 3) multiple group analysis. We discuss hypothesis formulation, the interpretation of Bayes
- 12 factors and posterior model probabilities, and sensitivity analysis.
- 13 Keywords: bain; Bayes Factor; Informative Hypotheses; Structural Equation Modeling
- 14 Word count: 5948

Teacher's Corner: Evaluating Informative Hypotheses Using the Bayes Factor in Structural

Equation Models

Hypotheses play a central role in deductive, theory-driven, research. A hypothesis 17 allows a researcher to draw inferences about a population, based on data sampled from that 18 population. In the context of structural equation modeling, there are two commonly used approaches to hypothesis evaluation. Firstly, researchers can construct a set of competing models, where each model represents several theoretically-derived substantive hypotheses. Researchers can then use information criteria to select the best model in the set. Commonly used information criteria include Akaike's information criterion (AIC, Akaike, 1974), the Bayesian information criterion (BIC, Schwarz, 1978), and the deviance information criterion (DIC, Spiegelhalter, Best, Carlin, & Linde, 2002). Secondly, hypotheses about specific 25 parameters within a model can be tested by comparing a null hypothesis against an 26 alternative hypothesis using the likelihood ratio test (Wilks, 1938) or the Wald test (Buse, 27 1982). 28

A third approach is informative hypothesis evaluation (Hoijtink, 2011). Informative hypotheses are theoretically-derived statements about directional differences and equality constraints between model parameters of interest. Informative hypotheses address an important limitation of classical null-hypothesis significance testing: The null-hypothesis that a parameter is equal to zero is often a "straw man" hypothesis. It holds little credibility, and exists purely for the purpose of being rejected. The researcher's actual theory, on the other hand, is subsumed under a very broad alternative hypothesis, and is not directly tested. The paradox inherent in this approach is that rejecting the straw man null-hypothesis cannot be interpreted as evidence in support of the researcher's theory, but merely as evidence against the null. Informative hypotheses overcome this counter-intuitive limitation, by explicitly testing a researcher's theoretical beliefs.

Evaluating informative hypotheses is particularly straightforward from a Bayesian

40

```
perspective. Bayesian inference is already widely applied in the context of multivariate
41
   normal linear models (see, for example: Well, Kolk, & Klugkist, 2008; Braeken, Mulder, &
   Wood, 2015; Jong, Rigotti, & Mulder, 2017; Zondervan-Zwijnenburg et al., 2019). Methods
43
   for Bayesian hypothesis evaluation within the structural equation modeling framework are
   also available (Gu et al., 2019a; Van De Schoot, Hoijtink, Hallquist, & Boelen, 2012).
45
   However, they are less frequently applied (but see Van Lissa, Hawk, Branje, Koot, & Meeus,
   2016). This might be, in part, because user-friendly software was not available. In this
   Teacher's Corner paper, we show how Bayesian tests of informative hypotheses about
   parameters in structural equation models can easily be conducted in R, using the bain
   package (Gu et al., 2019b; Gu, Mulder, & Hoijtink, 2018; Hoijtink, Gu, & Mulder, 2018;
   Mulder, 2014). From version 0.2.3 on, the package can evaluate informative hypotheses
   about structural equation models estimated with the free, open-source SEM-package lavaan
   (Loehlin & Beaujean, 2016; Rosseel, 2012). For a tutorial and technical details, see Hoijtink
```

55 Formulating Informative Hypotheses

et al. (2019b).

66

- Informative hypotheses are formulated in terms of equality (=) and inequality (<, >)
 constraints between target parameters. For example, one might hypothesize that one
 regression coefficient is greater than the another, $H_1: \beta_1 > \beta_2$, or that both are equal to a
 specific value, $H_2: (\beta_1, \beta_2) = 0.6$, or that one is greater than the other, which in turn is equal
 to zero, $H_3: \beta_1 > \beta_2 = 0$. The bain package uses a simple syntax to specify such hypotheses,
 which is explained in detail in the package vignette. Here, we provide a brief overview of the
 syntactical elements that are relevant in the context of structural equation models:
- \$1, ..., \$6: Refers to the target parameters \$1 up to \$6. Substitute these with the names of parameters in your model.
- s1 = c: An equality constraint, indicating that parameter s1 is equal to constant c
 - s1 > c: An inequality constraint, indicating that parameter s1 is larger than constant

67 C

- s1 = s2 = s3: Three parameters have equal values.
- (s1, s2, s3) > 0: Three parameters, grouped by parentheses, are greater than zero.
- c1 * s1 + c2 < c3 * s2 + c4: A linear transformation of s1 (where a constant is added to, or multiplied with, s1) is smaller than with a linear transformation of s2.
- ... & ...: Within one hypothesis, the ampersand connects two constraints.
- ...; ...: The ; separates two distinct informative hypotheses.
- When writing informative hypotheses about parameters of a lavaan model,
 parameters can be referenced by name. These names should be (unique abbreviations of) the
 parameter names used by lavaan. For example, lavaan labels the factor loading of the
 indicator Ab on the latent variable A as A=~Ab. This label, "A=~Ab", can be referenced
 verbatim in bain syntax, as in "A=~Ab > .6".
- Note that comparing parameters (usually) makes sense only if they are on the same 79 scale. For example, imagine that income is predicted by IQ and SES, where IQ is measured 80 using a normed test (M = 100, SD = 15), and SES is rated on a 10-point ordinal scale 81 which we treat as continuous. The regression coefficients for these predictors are β_{IQ} and 82 β_{SES} , respectively. Since IQ and SES are measured on different scales, the hypothesis that 83 $\beta_{IQ} < \beta_{SES}$ is meaningless. The unstandardized coefficients reflect both the strength of the relation of the predictors with income, and the scale with which the predictors were 85 measured. The hypothesis does make sense with regard to the standardized model estimates, however. As a counterexample, if family income is predicted by maternal and paternal working hours, then the regression coefficients are on the same scale (dollars per hour of work), and can be directly compared. These examples illustrate that, except when comparing predictors measured on the same scale, or in other exceptional situations, it is usually safer to apply bain only to standardized model parameters.

2 Bayesian Hypothesis Evaluation

One of the key features of the Bayesian approach is that p-values, common to 93 null-hypothesis significance testing, are dispensed with. Instead, hypotheses are evaluated using the Bayes factor (Kass & Raftery, 1995). The Bayes factor quantifies the relative support provided by the data for two competing hypotheses. For example, let H_i be an informative hypothesis that describes some (in)equality constraints among model parameters. Let H_u be an unconstrained hypothesis that places no constraints on these model parameters. The Bayes factor BF_{iu} , quantifies the support in favor of H_i relative to H_u . If this Bayes factor BF_{iu} is larger than 1, the data provide more support for H_i than for H_u . If 100 it is smaller than 1, the data provide more support for H_u than for H_i . A Bayes factor near 1 101 is indecisive; both hypotheses are equally supported. The Bayes factor can be inverted to 102 express support in favor of H_u , relative to H_i . To this end, one can compute BF_{iu} as $1/BF_{ui}$. 103 Thus, if $BF_{iu} = 8.11$, then we can conclude that the data provide 8.11 times more support 104 for H_i than for H_u . Conversely, BF_{ui} (note that the order of the indices has changed) would 105 be 1/8.11 = .12. 106 Since the Bayes factor is a relative measure of support, it should not be compared to a 107 threshold value. If, for example, $BF_{iu} = 102.75$ it is clear that the data provides 108 overwhelming support for H_i over H_u . With smaller values, such as $BF_{iu} = 7.34$, a preference for H_i can still be defended, but other researchers might debate this preference, and with even smaller values, such as $BF_{iu} = 3$, there is a preference for H_i , but H_u is 111 definitely not disqualified. Thus, the Bayes factor can, and should, be interpreted on a 112 continuous scale. This also sets it apart from the dichotomous decision making imposed by 113 the p-value. It is up to the scientific community to decide when "enough" evidence is 114 obtained to completely rule out a hypothesis. For a more elaborate discussion of Bayesian 115 hypothesis evaluation using bain, not specific to structural equation modeling, see the 116 tutorial by (Hoijtink et al., 2019b). 117

Statistical underpinnings. The Bayes factor BF_{iu} can be written as a ratio of two marginal likelihoods of the hypotheses given the data (m), or alternatively, as the ratio of "fit" (f_i) and "complexity" $(c_i, Gu, Mulder, \& Hoijtink, 2018)$:

$$BF_{iu} = \frac{m(H_i \mid \text{data})}{m(H_u \mid \text{data})} = \frac{f_i}{c_i}.$$

The notion of fit reflects the extent to which the data is in agreement with the restrictions specified in the hypothesis, and its complexity reflects how specific the hypothesis is (Gu, Mulder, & Hoijtink, 2018). This ratio of fit and complexity is a concept that is also reflected in information criteria such as the AIC (Akaike, 1974) and the DIC (Spiegelhalter et al., 2002).

The bain algorithm estimates fit and complexity based on normal approximations of 126 the prior and posterior distributions for the target parameters of the hypothesis. These 127 distributions have a known mean and covariance matrix (Gu et al., 2018; Hoijtink et al., 128 2018). The posterior is defined by the observed parameter estimate and their asymptotic 129 covariance matrix. For hypotheses with only inequality constraints, the fit (f_i) is then given 130 by the proportion of this posterior distribution that is in agreement with the hypothesis (Gu 131 et al., 2018; Hoijtink et al., 2018). For hypotheses with equality constraints, the fit is defined 132 in terms of the posterior density at the constraints. 133

The prior distribution is constructed to provide an adequate quantification of
complexity (see Gu, Mulder, & Hoijtink, 2018; Hoijtink, Gu, & Mulder, 2019). This is
achieved by setting the prior mean along the boundary of the hypotheses under
consideration. The prior covariance matrix is a scaling transformation of the posterior
covariance matrix. Scaling increases the variances, leading to a flatter distribution. By
default, bain scales the covariance matrix to be as flat as it would have been if it were based
on the smallest possible sample required to estimate the target parameters. This is based on
the concept of a minimal training sample (Berger & Pericchi, 2004; Mulder, 2014; O'Hagan,
1995). Thus, the prior covariance matrix is much flatter, and therefore less informative, than

the posterior. The complexity (c_i) is given by the proportion (for inequality constrained hypotheses) or density (for equality constrained hypotheses) for the region of the prior distribution that is in agreement with the hypothesis.

Evaluating a single informative hypothesis. One way to evaluate a single 146 informative informative hypothesis is to compare it with an "unconstrained" hypothesis, as 147 in the preceding paragraphs. Let H_i signify any informative hypothesis that describes some 148 (in)equality constraints among model parameters, such as $H_i: \beta_1 > \beta_2$, or $H_i: \beta_1 > \beta_2 = 0.6$. 149 The unconstrained hypothesis H_u places no constraints on these model parameters: 150 $H_u: \beta_1, \beta_2$. The Bayes factor BF_{iu} then quantifies the relative support provided by the data 151 in favor of the informative hypothesis, relative to the unconstrained hypothesis - or in other 152 words, how likely is it that the specified parameter constraints are true, relative to any other 153 ordering of parameters. Throughout this paper, we use the notation $BF_{.u}$ to refer to Bayes 154 factors of this type in the general sense, where signifies any informative hypothesis. 155

A second way to evaluate support in favor of an informative hypothesis, is to compare 156 it to its complement. The complement is an alternative hypothesis that covers every ordering 157 of parameter values that is not in line with the original hypothesis. If the informative 158 hypothesis H_i expresses "the researcher's theory", and ! represents logical negation ("not"), 159 then the complement $H_c: !H_i$ means "not the researcher's theory". Comparing against the 160 complement allows researchers to investigate whether their expectation is, or is not, 161 supported by the data. Bayes factor of the type BF_{.c} indicate whether the data provide more 162 support in favor of, or against, an informative hypothesis. In principle, the complement is defined by reference to a specific informative hypothesis, such that the complement of H_1 is 164 $!H_1$, and the complement of H_2 is $!H_2$. For hypotheses with at least one equality constraint, 165 however, the unconstrained hypothesis and the complement are the same. Since version 166 0.2.4, bain reports both BF_{.u} and BF_{.c} by default. 167

It is worth pointing out that alternative, non-Bayesian methods exist that compare informative hypotheses against the null-hypothesis (Vanbrabant, Van De Schoot, Van Loey,

& Rosseel, 2017; Van De Schoot, Hoijtink, & Deković, 2010). When using bain, it is also possible to evaluate the null-hypothesis by specifying it as an informative hypothesis (i.e., a hypothesis that constrains all parameters to be equal to zero, or to be equal to one another), and comparing it with other informative hypotheses using the approach elaborated in the next paragraph.

Comparing two informative hypotheses. A second question researchers might want to address, is which of two informative hypotheses, H_1 and H_2 , is most supported by the data. The Bayes factor BF₁₂ reflects the amount of support provided by the data in favor of H_1 , relative to H_2 . It is computed by taking a ratio of two other Bayes factors:

$$BF_{12} = \frac{BF_{1u}}{BF_{2u}}$$

This approach is valid because Bayes factors for any two informative hypotheses can be
compared if both have the same denominator. In the previous section, we explained that it is
not possible to compare Bayes factors of the type $BF_{.c}$, because the complement of H_1 is not
the same as that of H_2 . However, Bayes factors of the type $BF_{.u}$ are comparable, because
the unconstrained hypothesis is identical for all informative hypotheses. Thus, BF_{12} can be
computed to contrast a pair of user-specified informative hypotheses.

By default, bain will compute Bayes factors to contrast all informative hypotheses.

Thus, given three hypotheses, $H_1: \beta 1 = \beta 2 = \beta 3 = 0$, $H_2: \beta 1 > 0 \& \beta 2 > 0 \& \beta 3 > 0$, and $H_3: \beta 1 > \beta 2 > \beta 3 > 0$, bain will compute BF₁₂, BF₁₃, and BF₂₃. These Bayes factors are

stored in the \$BFmatrix element of the output.

Comparing more than two hypotheses. Any two informative hypotheses can be straightforwardly compared using the method outlined above. When there are more than two candidate hypotheses, however, comparing all of their mutual Bayes factors quickly becomes cumbersome. In this case, it is easier to compare the so-called posterior model probabilities for each hypothesis H_i , that is, $P(H_i|\text{data})$. Each posterior model probability has a value between 0 and 1, and the posterior model probabilities for a set of hypotheses

sum to 1.0. Under the assumption that, a priori (before observing the data), each hypothesis 195 is equally likely, the posterior model probabilities contain the same information as the Bayes 196 factors upon which they are based. If, for example, $BF_{12} = 3.5$, $BF_{13} = 7.0$ and $BF_{23} = 2.0$, 197 the corresponding posterior model probabilities are $P(H_1|\text{data}) = .7$, $P(H_2|\text{data}) = .2$, and 198 $P(H_3|\text{data}) = .1$, respectively. Note that, $BF_{12} = \frac{P(H_1|\text{data})}{P(H_2|\text{data})} = \frac{.7}{.2} = 3.5$. Posterior model 190 probabilities can also be interpreted as Bayesian error probabilities. If the set of hypotheses 200 under consideration contains H_1 , H_2 , and H_3 , and the corresponding posterior model 201 probabilities are .7, .2, and .1, respectively, then the Bayesian error probability associated 202 with a preference for H_1 is equal to .2 + .1 = .3. 203

A fail-safe hypothesis. It is important to emphasize that posterior model 204 probabilities only indicate which of the hypotheses in the set receives the most support from 205 the data. Consequently, if all of the hypotheses in the set misrepresent the true relationship 206 among parameters in the population, then researchers risk selecting the best of a set of "bad" 207 hypotheses. Two approaches can be used to mitigate this risk. The first approach uses the 208 unconstrained hypothesis H_u as a "fail-safe" hypothesis. Recall that H_u places no 209 constraints on the parameters. If the best hypothesis in the set receives more support than 210 the unconstrained hypothesis, we are reassured that it is not just the best of a set of bad 211 hypotheses. This approach is currently implemented in bain. The second approach would be 212 to include a hypothesis that is the complement of the union of all informative hypotheses in 213 the set. A nice feature of this second approach is that, whereas H_u overlaps with each of the 214 hypotheses under consideration, the complement of the union does not. However, as to vet 215 this option is not implemented in bain. 216

Structural Equation Modeling Using lavaan

217

In this paper, we present a subset of the (multiple group) structural equation models
that can be specified using the lavaan function sem, and for which informative hypotheses
can be formulated and processed with bain. The interested reader is advised to visit

http://lavaan.org/, where mini-tutorials and examples are used to explain all the functions and options available in the lavaan package. For a general introduction to structural equation modeling, the interested reader is referred to Loehlin and Beaujean (2016). As will be elaborated upon in the discussion, it is relatively easy to use bain for the evaluation of hypotheses for all models that can be specified in lavaan.

When used in conjunction with lavaan, bain extracts the (standardized or 226 unstandardized) target parameter estimates (per group), the covariance matrix of the 227 estimates (per group) and the sample size (per group) from the lavaan output object. Target parameters are defined as model parameters about which informative hypotheses are 229 formulated. By contrast, nuisance parameters are parameters not involved in the hypotheses of interest. bain is validated for use with target parameters that are either 1) regression 231 coefficients, 2) intercepts, or 3) factor loadings. Thus, by default, all (residual) (co)variances 232 are treated as nuisance parameters, along with any remaining parameters not involved in the 233 hypotheses. 234

A final note regarding assumptions: As explained earlier, bain constructs a default 235 prior distribution for the target parameters (per group), and derives a normal approximation 236 of the posterior. Asymptotically, the posterior distribution is indeed normal (see, for 237 example, Gelman et al., 2013, Chapter 4). However, bain should only be used if 238 approximate normality can be assumed, given the sample size. Rosseel (2020) provides 239 references that validate the use of structural equation modeling when the sample size is at 240 least 200. This approximate prior and posterior form the basis for the computation of Bayes factors for the informative hypotheses. A more detailed accessible introduction is presented in Hoijtink et al. (2019b), and the statistical underpinnings of the method are substantiated in Gu et al. (2018) and Hoijtink et al. (2018).

Tutorial examples

We present tutorial examples for three commonly used types of structural equation models: 1) confirmatory factor analysis, 2) latent variable regression, and 3) multiple group analysis. Each example follows a three-step workflow. In the first step, lavaan is used to estimate the parameters of a structural equation model. In the second step, one or more informative hypotheses are formulated. In the third step, the results of the lavaan analysis and the hypotheses are fed into bain, which renders a Bayesian evaluation of the hypotheses, returning Bayes factors and posterior model probabilities.

All examples use the synthetic data set "sesamesim", which is included with the bain 253 package. These data are generated to have similar distributional characteristics and 254 covariances to the Sesame Street data provided by Stevens (2012). These data concern the 255 effect of watching the tv-series "Sesame Street" for one year on the knowledge of numbers of 256 240 children aged between 34 to 69 months. We will use the following variables: Age in 257 months (age), the Peabody test, which measures the "mental age" of children (peabody; 258 score range 15 to 89), and sex, with boys coded as 1, and girls as 2. Several variables were 259 measured both before- and after watching Sesame Street for one year: Knowledge of 260 numbers (Bn: before, and An: after); knowledge of body parts (Bb and Ab, respectively), 261 letters (B1 and A1), forms (Bf and Af), relationships (Br and Ar), and classifications (Bc and 262 Ac). Models are fit using lavaan, and Figures are plotted using tidySEM (Van Lissa, 2020).

Example 1: Confirmatory Factor Analysis

245

264

A two-factor confirmatory factor analysis is specified using the syntax below, in which
the A(fter) measurements of all subtests load on the factor A, and the B(efore)
measurements load on the factor B (see Figure 1).

```
model1 <- 'A =~ Ab + Al + Af + An + Ar + Ac
B =~ Bb + Bl + Bf + Bn + Br + Bc'
```

```
fit1 <- sem(model1, data = sesamesim, std.lv = TRUE)
```

The argument std.lv = TRUE implies that the model is identified by standardizing
the latent variables B and A. This allows the formulation of informative hypotheses with
respect to each of the factor loadings, including the first.

Specifying informative hypotheses. One plausible hypothesis for this
confirmatory factor analysis might be that indicators are strongly related to the factors to
which they are assigned. This is reflected by the following hypothesis, which states that all
(standardized) factor loadings are larger than .6:

```
hypotheses1 <- "(A=~Ab, A=~A1, A=~Af, A=~An, A=~Ar, A=~Ac) > .6 & (B=~Bb, B=~B1, B=~Bf, B=~Bn, B=~Br, B=~Bc) > .6"
```

This example consists of one hypothesis about two groups of parameters, enclosed by parentheses, which are chained by the ampersand symbol. Note that, although we could group all loadings between brackets, before and after are separated for clarity. In this example, the target parameters are factor loadings, the sample size is N=240, and therefore, we assume that the posterior distribution of the target parameters is approximately normal.

Evaluating hypotheses. Now, we will evaluate the informative hypotheses for this example using bain(). As input to the function, we use the lavaan output object fit1 and the hypotheses hypotheses1 that were specified above. The argument standardize =

TRUE ensures that the hypotheses are evaluated in terms of standardized model parameters.

280

281

283

Before calling bain(), we set a seed for the random number generator using

set.seed(). This is necessary to ensure computational replicability, because bain draws

random samples from the prior and posterior distributions of the target parameters. If

another seed is used, a different random sample will be drawn, which could lead to

differences in the resulting Bayes factors and posterior model probabilities. These differences

should be negligible, and it is good practice to conduct a sensitivity analysis for Monte Carlo error (the variability due to different random seeds) by changing the seed to ensure that the results are replicated.

```
set.seed(100)
results1 <- bain(fit1, hypotheses1, standardize = TRUE)
results1</pre>
```

The resulting bain() output is presented in Table 1. The Bayes factor BF_{1c} , which compares H_1 to its complement, is found on the row for H_1 , in column BF.c. As can be seen, $BF_{1c} = 93.33$, that is, the data offers overwhelming support in favor of H_1 . This is not surprising when we examine the parameter estimates and their 95% central credible intervals using the summary() function (see Table 2).

summary(results1)

In agreement with H_1 , all observed standardized loadings are larger than .6. Note that, a preference for H_1 compared to H_u comes with a Bayesian error probability of .01: A 1% probability that the choice for H_1 is incorrect, conditional on the set of models (see Table 1).

300 Example 2: Latent Regression

A latent regression model is specified using the code below. The measurement model for the factors B and A is the same as in Example 1. In this example, however, the correlation from the preceding example is replaced by a regression coefficient. Moreover, age and peabody are included as observed covariates. This analysis thus allows us to investigate whether children's knowledge after watching Sesame Street for a year is predicted by their knowledge one year before, as well as by their biological- and mental age.

```
model2 <- 'A =~ Ab + Al + Af + An + Ar + Ac

B =~ Bb + Bl + Bf + Bn + Br + Bc

A ~ B + age + peabody'

fit2 <- sem(model2, data = sesamesim, std.lv = TRUE)</pre>
```

Specifying informative hypotheses. This example contains three hypotheses, separated by semicolons, regarding the relative importance of B, age, and peabody when predicting A:

```
hypotheses2 <- "A~B > A~peabody = A~age = 0;

A~B > A~peabody > A~age = 0;

A~B > A~peabody > A~age > 0"
```

 H_1 specifies that the regression coefficient of B on A is greater than zero, and that the coefficients of age and peabody on A are equal to zero. H_2 specifies that the regression coefficient of B on A is greater than that of peabody on A, which in turn is bigger than that of age on A, which is equal to zero. H_3 specifies that the coefficient of B on A is greater than that of peabody on A, which, in turn, is greater than that of age on A, which is greater than zero.

Evaluating hypotheses. The code below evaluates the hypotheses specified for the latent regression example:

```
set.seed(748)
results2 <- bain(fit2, hypotheses2, standardize = TRUE)</pre>
```

The results are reported in Table 3. When H_1 , H_2 , and H_3 are compared to their respective complements, there is substantial support for H_1 , somewhat less for H_2 , and substantially less support for H_3 . The posterior model probabilities, PMPb, help determine

which of the three informative hypotheses is the best of the set, and whether the 321 unconstrained hypothesis H_u holds any credulity. Supported by a posterior model 322 probability of .79, H_1 appears to be the best of the set of hypotheses. However, a choice for 323 H_1 implies a Bayesian error probability of .17 + .03 + .01 = .21, that is, it would be unwise 324 to ignore the possibility that another hypothesis (especially H_2) might also be a good 325 candidate. It is clear that the regression coefficient of B is larger than zero, but maybe the 326 regression coefficient of peabody is also larger than zero. We can see how these findings 327 relate to the model parameters by calling summary() on the bain object (see Table 4). 328

29 Example 3: Multiple Group Analysis

This example demonstrates how to evaluate informative hypotheses about freely 330 estimated parameters across groups in a multi-group structural equation model. It is 331 important to emphasize that the Bayes factor implemented in bain is only valid for multiple 332 group models without any between-group parameter constraints. The reason is that bain 333 requires a separate asymptotic covariance matrix for the parameters of each group. This is 334 only possible when no between-group constraints are imposed, because then (and only then) 335 is the asymptotic covariance matrix block-diagonal, and can we extract a covariance matrix 336 per group. For more information, see Hoijtink, Gu, and Mulder (2018). A multiple group model can be estimated by specifying a grouping variable in the call to sem. The code below 338 runs an analysis in which the parameters of a regression model are estimated separately for 339 boys and girls. The model predicts knowledge of numbers after watching Sesame Street for a year based on prior knowledge of numbers, and the peabody mental age test (see Figure 2). 341

```
model3 <- ' postnumb ~ prenumb + peabody '
# Assign labels to the groups to be used when formulating hypotheses
sesamesim$sex <- factor(sesamesim$sex, labels = c("boy", "girl"))
# Fit the multiple group structural equation model
fit3 <- sem(model3, data = sesamesim, group = "sex")</pre>
```

Specifying informative hypotheses. For the multiple group (boys versus girls) structural equation model, we evaluate two hypotheses: That standardized regression coefficients are equal for boys and girls (H_1) , or that they are smaller for boys as compared to girls (H_2) . In other words, are number knowledge before and the peabody test better predictors of number knowledge after for girls than for boys?

Evaluating hypotheses. The results, displayed in Table 5, indicate that H_1 receives 41.20 times more support from the data than its complement. Conversely, H_2 received 1/.16 = 6.25 times less support than its complement. These results indicate that the predictability of "postnumb" does not depend on gender. This is also reflected by the posterior model probabilities that show that a decision in favor of H_1 comes with a Bayesian error probability of only 0.02.

```
set.seed(235)
results3 <- bain(fit3, hypotheses3, standardize = TRUE)</pre>
```

This conclusion is corroborated by the model coefficients, obtained by running summary(results3). As seen in Table 6, the credible intervals for the regression coefficients for boys and girls show substantial overlap.

Further extensions

357 Sensitivity Analysis

356

Bayes factors for hypotheses containing at least one equality constraint are sensitive to
the scaling factor used to construct the prior distribution. Recall that the default scaling

factor in bain is based on the notion of a minimal training sample; the smallest sample size
required to estimate the target parameters. This default scaling factor is set by the default
argument fraction = 1 in the call to bain(). A default argument does not need to be
specified, but can be changed manually by specifying a different value. The smallest possible
scaling factor is the default, 1. Larger scaling factors increase confidence in the prior, making
it more concentrated and less spread out. Thus, specifying fraction = 2 raises the scaling
factor to twice the size of the minimal training sample, and fraction = 3 to thrice the size.

The reason hypotheses containing at least one equality constraint are sensitive to the scaling factor is that equality constraints are represented as a fixed-width "slice" of the parameter space around the constraint value (in technical terms, the point density at this value). If the width of the prior changes, the ratio of the fixed-width slice to the overal width of the prior changes. Hypotheses specified using only inequality constraints are not sensitive to the scaling factor, because these constraints divide the parameter space (like cutting the distribution into two halves). As the width of the prior changes, the space on both sides of the constraint decreases commensurately, so their ratio remains the same (see Hoijtink et al., 2019b for a full explanation).

It is possible to conduct a sensitivity analysis to examine how sensitive the Bayes
factors are to the scaling factor. The convenience function bain_sensitivity() accepts a
vector argument called fractions = ..., and returns a list of bain objects. The
summary() function for this sensitivity analysis accepts an argument which_stat, that can
be used to request a sensitivity analysis table for a specific statistic (by default, this is the
"BF"). Below, we demonstrate how to conduct a sensitivity analysis, based on Example 2:

The results are presented in Table 7. It shows that the value of BF_{3c} is invariant, whereas BF_{1u} and BF_{2u} decrease as the scaling factor increases. The posterior model probabilities change accordingly, as can be seen in Table 8.

summary(results sens, which stat = "PMPb")

The remaining question is how to deal with the sensitivity of the Bayes factor to the 385 scale factor. There are three potential courses of action. Firstly, if all hypotheses under 386 consideration are formulated using only inequality constraints, the Bayes factors are 387 invariant, as can be seen from BF_{3c} in Table 8. Secondly, if the hypotheses contain equality 388 constraints, researchers can rely on the default scaling factor implemented in bain. The 380 resulting Bayes factors tend to favor hypotheses with equality constraints over their 390 complement. This approach ensures that the evidence in the data has to be compelling 391 before it is concluded that the constraints do not hold. When applied to null-hypotheses (i.e., 392 an equality constrained hypothesis stating that a parameter is equal to zero), this 393 conservative approach curtails the false positive rate. This is appropriate, especially in the 394 context of the replication crisis (see, for example, Open Science Collaboration, 2015). 395 Thirdly, researchers can execute a sensitivity analysis, as in the preceding example: 396 Empirically investigate the sensitivity of the Bayes factors to the scaling factor, and report the results. In our experience, conclusions are usually robust with respect to different values 398 of the scaling factor. This can also be seen in Table 7: Although the Bayes factor for H_1 399 decreases from 150.87 to 50.29, the conclusion remains that H_1 is substantially more 400 supported than H_c . Furthermore, in terms of posterior model probabilities, the conclusion 401 remains that H_1 is the best hypothesis, and that H_2 cannot be ruled out. 402

Experimental applications

The examples above all use the standard interface of the bain() function, which requires two arguments: A model object, and a hypothesis. This interface accepts all lavaan

model objects generated by the functions cfa, sem, and growth. Within these models, 406 parameters may be fixed, and data may be categorical, and hypotheses can be formulated 407 with respect to intercepts, factor loadings, and regression coefficients. Some situations that 408 cannot currently be handled by bain include multilevel models (specified using the cluster 409 argument), and defined parameters, such as indirect effects in mediation models. If a 410 researcher wishes to circumvent the standard user interface, bain() can be applied to a 411 named vector of parameters, instead of one of one of the model types for which methods 412 exist. This approach calls the default method of bain, which is less user-friendly, but more 413 flexible than the model-specific interface. Section 4.i in the bain package vignette illustrates 414 this approach, and demonstrates how to manually extract the target parameter estimates 415 and place them in a named vector, and how to obtain the parameter covariance matrix and 416 sample size from a lavaan object. This vignette can be loaded by calling vignette ("bain introduction", package = "bain"). Note that non-standard 418 applications of bain that have not yet been validated should be identified as such, or substantiated with a simulation study. 420

Discussion

431

This Teacher's Corner paper introduced Bayesian hypotheses evaluation for structural 422 equation models using bain and lavaan. The combination of both R packages enables the 423 free, open-source, and user friendly evaluation of informative hypotheses for structural equation models. The approach elaborated in this paper uses Bayes factors, which are a 425 measure of relative support for two hypotheses. The interpretation of Bayes factors is 426 straightforward: It is a ratio of evidence in favor of one hypothesis, relative to evidence in 427 favor of another hypothesis. Bayes factors can be indecisive; the closer Bayes factors get to 428 one, the less differential support was found for either hypothesis. It is up to the scientific 429 community to decide how much evidence is sufficient evidence. 430

The advocated approach allows users to evaluate support for a single informative

hypothesis, either relative to its complement, or relative to an unconstrained hypothesis.

The Bayes factor BF_{.c} compares against the complement, and expresses how much evidence
the data provides is in favor of "the theory", as compared to "not the theory". The Bayes
factor BF_{.u} compares against the unconstrained hypothesis, and expresses how much
evidence the data provides is in favor of "the theory", as compared to "any ordering of
parameters". Two informative hypotheses can be compared by computing their joint Bayes
factor, which is a ratio of the two BF_{.u}s for these hypotheses.

When simultaneously evaluating more than two hypotheses, it is convenient to use the posterior model probabilities. These quantify the proportion of support for each hypothesis in a set, conditional on the data. This was illustrated in Example 2. Bayesian error probabilities additionally quantify the uncertainty of decisions about hypotheses. The probability that a preference for one hypothesis in the set is incorrect, is equal to the sum of posterior model probabilities for the other informative hypotheses. This is a conditional probability, that is, conditional on the available data and the hypotheses in the set.

Structural equation models are often estimated on data that contain missing values.

Fortunately, the Bayes factor implemented in bain can also be computed if the data contain missing values (Gu et al., 2019a; Hoijtink et al., 2019a). Users can use multiple imputation (Van Buuren, 2018) to obtain estimates of the (standardized) target parameters, their covariance matrix, and the effective sample size, and once those are available, bain be used for the evaluation of informative hypotheses. The interested reader is referred to the vignette included with the bain package, which includes an elaborate example.

Several potential limitations remain. One such limitation is the fact that bain utilizes normal approximations of the prior and posterior distribution. This could have implications for quantities whose sampling distribution is known to be non-normally distributed, such as indirect effects (MacKinnon, Lockwood, & Williams, 2004). However, this problem is averted by the fact that users are currently prevented from using the lavaan interface to bain for

derived parameters, which includes indirect effects. A second limitation is the fact that bain 458 cannot handle multiple group models with between-group constraints. Substantial future 459 research is required to overcome this issue. An implication of this limitation is that it is not 460 possible to impose measurement invariance in multiple group latent variable models. One 461 potential solution, that can already be applied, is to use linear transformations within the 462 bain hypotheses to ensure that parameters are comparable across groups. However, this 463 procedure is complicated and beyond the scope of this tutorial. Pending a future publication 464 addressing measurement invariance, researchers can contact the authors to obtain support 465 for such analyses. 466

In conclusion, bain enables user-friendly Bayesian evaluation of informative hypotheses for structural equation models estimated in lavaan. The method has been validated for regression coefficients, factor loadings, and intercepts, in a range of commonly specified structural equation models, such as factor analyses, latent regression analyses, multi-group models, and latent growth models. Its functionality will be further expanded in future updates, and the default method for named vectors offers the freedom to explore applications not currently covered by the standard interface.

References

```
Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on
475
          Automatic Control, 19(6), 716–723. https://doi.org/10.1109/TAC.1974.1100705
476
   Berger, J. O., & Pericchi, L. R. (2004). Training samples in objective Bayesian model
          selection. The Annals of Statistics, 32(3), 841–869.
478
          https://doi.org/10.1214/009053604000000229
470
   Braeken, J., Mulder, J., & Wood, S. (2015). Relative effects at work: Bayes factors for order
480
          hypotheses. Journal of Management, 41(2), 544–573.
481
          https://doi.org/10.1177/0149206314525206
482
   Buse, A. (1982). The Likelihood Ratio, Wald, and Lagrange Multiplier Tests: An Expository
           Note. The American Statistician, 36(3a), 153–157.
484
          https://doi.org/10.1080/00031305.1982.10482817
485
   Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013).
486
           Bayesian data analysis. Chapman and Hall/CRC.
487
   Gu, X., Hoijtink, H., Mulder, J., & Rosseel, Y. (2019a). Bain: A program for Bayesian
488
           testing of order constrained hypotheses in structural equation models. Journal of
480
          Statistical Computation and Simulation, 89(8), 1526–1553.
          https://doi.org/10.1080/00949655.2019.1590574
491
   Gu, X., Hoijtink, H., Mulder, J., & van Lissa, C. (2019b). Bain: Bayes factors for
492
          informative hypotheses. (Version 0.2.3). Retrieved from
493
          https://CRAN.R-project.org/package=bain
494
```

Gu, X., Mulder, J., & Hoijtink, H. (2018). Approximated adjusted fractional Bayes factors:

A general method for testing informative hypotheses. *British Journal of Mathematical*and Statistical Psychology, 71(2), 229–261. https://doi.org/10.1111/bmsp.12110

Hoijtink, H. (2011). Informative hypotheses: Theory and practice for behavioral and social

```
scientists. Chapman and Hall/CRC.
```

- Hoijtink, H., Gu, X., & Mulder, J. (2018). Bain, multiple group Bayesian evaluation of
 informative hypotheses. British Journal of Mathematical and Statistical Psychology.
 DOI: 10.1111/Bmsp, 12145.
- Hoijtink, H., Gu, X., Mulder, J., & Rosseel, Y. (2019a). Computing Bayes factors from data with missing values. *Psychological Methods*, 24(2), 253–268.
- https://doi.org/10.1037/met0000187
- Hoijtink, H., Mulder, J., van Lissa, C., & Gu, X. (2019b). A tutorial on testing hypotheses using the Bayes factor. *Psychological Methods*, 24(5), 539–556.
- https://doi.org/10.1037/met0000201
- Jong, J. de, Rigotti, T., & Mulder, J. (2017). One after the other: Effects of sequence
 patterns of breached and overfulfilled obligations. European Journal of Work and
 Organizational Psychology, 26(3), 337–355.
- https://doi.org/10.1080/1359432X.2017.1287074
- 513 Kass, R. E., & Raftery, A. E. (1995). Bayes Factors. Journal of the American Statistical

 514 Association, 90(430), 773–795. https://doi.org/10.1080/01621459.1995.10476572
- Loehlin, J. C., & Beaujean, A. A. (2016). Latent variable models: An introduction to factor,

 path, and structural equation analysis. Taylor & Francis.
- MacKinnon, D. P., Lockwood, C. M., & Williams, J. (2004). Confidence Limits for the

 Indirect Effect: Distribution of the Product and Resampling Methods. *Multivariate*Behavioral Research, 39(1), 99–128. https://doi.org/10.1207/s15327906mbr3901_4
- Mulder, J. (2014). Prior adjusted default Bayes factors for testing (in)Equality constrained hypotheses. Computational Statistics & Data Analysis, 71, 448–463.
- 522 https://doi.org/10.1016/j.csda.2013.07.017
- O'Hagan, A. (1995). Fractional Bayes Factors for Model Comparison. Journal of the Royal

```
Statistical Society: Series B (Methodological), 57(1), 99–118.
524
          https://doi.org/10.1111/j.2517-6161.1995.tb02017.x
525
   Rosseel, Y. (2012). Lavaan: An R package for structural equation modeling and more
526
          Version 0.5-12 (BETA), 37.
527
   Rosseel, Y. (2020). Small sample solutions for structural equation modeling. In R. Van De
528
          Schoot & M. Miočević (Eds.), Small sample size solutions: A quide for applied
529
          researchers and practitioners. CRC Press.
530
   Schwarz, G. (1978). Estimating the Dimension of a Model. The Annals of Statistics, 6(2),
531
          461–464. https://doi.org/10.1214/aos/1176344136
532
   Spiegelhalter, D. J., Best, N. G., Carlin, B. P., & Linde, A. V. D. (2002). Bayesian measures
533
          of model complexity and fit. Journal of the Royal Statistical Society: Series B
          (Statistical Methodology), 64(4), 583-639. https://doi.org/10.1111/1467-9868.00353
535
   Stevens, J. P. (2012). Applied multivariate statistics for the social sciences. Routledge.
536
   Vanbrabant, L., Van De Schoot, R., Van Loey, N., & Rosseel, Y. (2017). A General
537
           Procedure for Testing Inequality Constrained Hypotheses in SEM. Methodology,
538
          13(2), 61–70. https://doi.org/10.1027/1614-2241/a000123
530
   Van Buuren, S. (2018). Flexible imputation of missing data. Chapman and Hall/CRC.
   Van De Schoot, R., Hoijtink, H., & Deković, M. (2010). Testing Inequality Constrained
541
           Hypotheses in SEM Models. Structural Equation Modeling: A Multidisciplinary
542
          Journal, 17(3), 443–463. https://doi.org/10.1080/10705511.2010.489010
543
   Van De Schoot, R., Hoijtink, H., Hallquist, M. N., & Boelen, P. A. (2012). Bayesian
           Evaluation of Inequality-Constrained Hypotheses in SEM Models Using Mplus.
545
          Structural Equation Modeling: A Multidisciplinary Journal, 19(4), 593–609.
          https://doi.org/10.1080/10705511.2012.713267
```

Van Lissa, C. J. (2020). tidySEM: Generate tidy SEM-syntax (Version 0.1.0.5). Retrieved

```
from www.github.com/cjvanlissa/tidySEM
```

Van Lissa, C. J., Hawk, S. T., Branje, S., Koot, H. M., & Meeus, W. H. J. (2016). Common and unique associations of adolescents' affective and cognitive empathy development with conflict behavior towards parents. *Journal of Adolescence*, 47, 60–70. https://doi.org/10.1016/j.adolescence.2015.12.005

Well, S. van, Kolk, A. M., & Klugkist, I. G. (2008). Effects of Sex, Gender Role
 Identification, and Gender Relevance of Two Types of Stressors on Cardiovascular
 and Subjective Responses: Sex and Gender Match and Mismatch Effects. Behavior
 Modification. https://doi.org/10.1177/0145445507309030

Wilks, S. S. (1938). The Large-Sample Distribution of the Likelihood Ratio for Testing

Composite Hypotheses. *The Annals of Mathematical Statistics*, 9(1), 60–62.

Retrieved from https://www.jstor.org/stable/2957648

Zondervan-Zwijnenburg, M. A. J., Veldkamp, S. A. M., Neumann, A., Barzeva, S. A.,

Nelemans, S. A., Beijsterveldt, C. E. M. van, ... Boomsma, D. I. (2019). Parental

Age and Offspring Childhood Mental Health: A Multi-Cohort, Population-Based

Investigation. Child Development. https://doi.org/10.1111/cdev.13267

Table 1 $Bain\ output\ for\ the\ Confirmatory\ Factor\ Analysis$ Model

	Fit	Com	BF.u	BF.c	PMPa	PMPb
H1	0.88	0.01	93.33	762.05	1.00	0.99
Hu						0.01

Note. PMP: Posterior model probabilities; PMPa excludes Hu; PMPb includes Hu.

 $\label{thm:confirmatory} \begin{tabular}{ll} Table~2\\ Standardized~parameter~estimates~for~the~confirmatory~factor\\ analysis \end{tabular}$

Parameter	Estimate A	CI A	Estimate B	CI B
b	0.71	[0.64, 0.78]	0.77	[0.71, 0.82]
1	0.81	[0.76, 0.86]	0.65	[0.57, 0.73]
f	0.84	[0.79, 0.88]	0.81	[0.76, 0.86]
n	0.91	[0.88, 0.94]	0.89	[0.85, 0.92]
r	0.70	[0.63, 0.77]	0.72	[0.65, 0.79]
c	0.87	[0.84, 0.91]	0.83	[0.78, 0.87]

Note. CI: Credible interval.

Table 3

Bain output for the latent regression model

	Fit	Com	BF.u	BF.c	PMPa	PMPb
H1	69.90	0.46	150.87	150.87	0.80	0.79
H2	2.96	0.09	33.16	33.16	0.17	0.17
НЗ	0.07	0.01	5.64	6.01	0.03	0.03
Hu						0.01

Note. PMP: Posterior model probabilities; PMPa excludes Hu; PMPb includes Hu.

 $\begin{tabular}{ll} Table 4 \\ Standardized \ parameter \ estimates \ for \ latent \\ regression \end{tabular}$

	Parameter	Estimate	CI
13	A~B	0.79	[0.73, 0.85]
14	A~age	0.00	[-0.09, 0.09]
15	A~peabody	-0.02	[-0.11, 0.08]

Note. CI: Credible interval.

Table 5

Bain output for the latent regression model

	Fit	Com	BF.u	BF.c	PMPa	PMPb
H1	7.79	0.19	41.20	41.20	1.00	0.97
H2	0.02	0.11	0.18	0.16	0.00	0.00
Hu						0.02

Note. PMP: Posterior model probabilities; PMPa excludes Hu; PMPb includes Hu.

Table 6

Parameter estimates for the multiple group model

Parameter	Estimate boy	CI boy	Estimate girl	CI girl
postnumb~prenumb	0.53	[0.38, 0.68]	0.64	[0.52, 0.76]
postnumb~peabody	0.23	[0.07, 0.40]	0.06	[-0.09, 0.22]

Note. CI: Credible interval.

Table 7
Sensitivity analysis for the Bayes
factors (BF) of the latent
regression model

Fraction	H1	H2	НЗ
1.00	150.87	36.69	6.84
2.00	75.44	25.94	6.84
3.00	50.29	21.18	6.84

Table 8

Sensitivity analysis for posterior

model probabilities (PMPb) of the

multiple group model

Fraction	H1	H2	НЗ	Hu
1.00	0.77	0.19	0.03	0.01
2.00	0.69	0.24	0.06	0.01
3.00	0.64	0.27	0.08	0.01

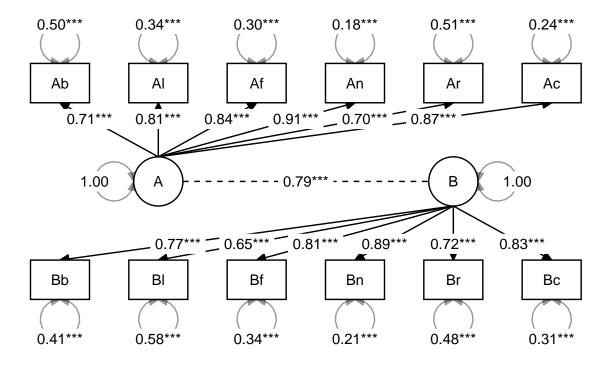


Figure 1. Confirmatory factor analysis

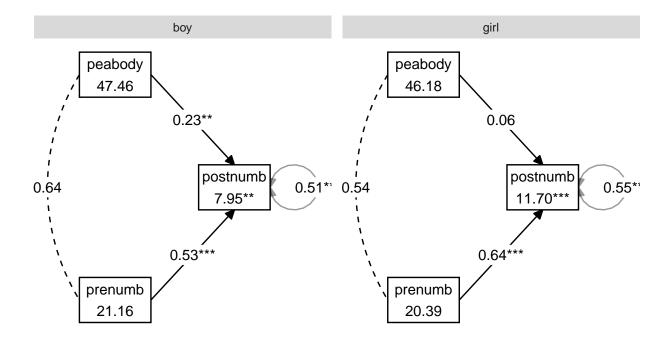


Figure 2. Multiple group analysis