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Abstract

When two independent means `1 and `2 are compared, �0 : `1 = `2, �1 : `1 ≠ `2, and

�2 : `1 > `2 are the hypotheses of interest. This paper introduces the R package SSDbain, which

can be used to determine the sample size needed to evaluate these hypotheses using the

Approximate Adjusted Fractional Bayes Factor (AAFBF) implemented in the R package bain.

Both the Bayesian t-test and the Bayesian Welch’s test are available in this R package. The sample

size required will be calculated such that the probability that the Bayes factor is larger than a

threshold value is at least [ if either the null or alternative hypothesis is true. Using the R package

SSDbain and/or the tables provided in this paper, psychological researchers can easily determine

the required sample size for their experiments.

Keywords: Bayes factor, Bayesian t-test, Bayesian Welch’s test, Sample Size Determination,

SSDbain
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Sample Size Determination for the Bayesian t-test and Welch’s test Using the Approximate

Adjusted Fractional Bayes Factor

Introduction

In the Neyman-Pearson approach to hypothesis testing (Gigerenzer, 2004) a null and an alternative

hypothesis are compared. Suppose the population means of males and females are denoted by `1

and `2. Three hypotheses are relevant: the null hypothesis �0: `1 = `2, the two-sided alternative

hypothesis �1: `1 ≠ `2, and the one-sided alternative hypothesis �2: `1 > `2. The null

hypothesis �0 is rejected if the observed absolute C-statistic falls inside the critical region, where

the critical region is a set of values that are equal to or greater than the critical value C1−U/2,E,

where U is the Type I error rate, and E is the degree of freedom for a two-sided alternative

hypothesis. The null hypothesis �0 is rejected if the observed C-statistic falls inside the critical

region, where the critical region is a set of values that are equal to or greater than the critical value

C1−U,E for a one-sided alternative hypothesis (Gigerenzer, 1993, 2004). Statistical power is the

probability of finding an effect when it exists in the population, that is, the probability of rejecting

the null hypothesis when the alternative is true. Power analysis for Neyman-Pearson hypothesis

testing has been studied for more than 50 years. Cohen (1988, 1992) played a pioneering role in

the development of effect sizes and power analysis, and he provided mathematical equations for

the relation between effect size, sample size, Type I error rate and power. For example, if one aims

for a power of 80%, the minimum sample size per group should be 394, 64 and 26 for small

(3 = 0.2), medium (3 = 0.5) and large (3 = 0.8) effect sizes, respectively for an independent

samples two-sided t-test at Type I error rate U = .05, where Cohen’s 3 is the standardized

difference between two means. To perform statistical power analyses for various tests, the

G*Power program was developed by Erdfelder et al. (1996), Faul et al. (2007) and Mayr et al.

(2007). Despite the availability of G*Power there is still a lot of underpowered research in the

behavioral and social sciences, even though criticism with respect to insufficient power is steadily

increasing (Button et al., 2013; Maxwell, 2004; Simonsohn et al., 2014).
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Numerous articles have criticized the Neyman-Pearson approach to hypothesis testing in the

classical framework (e.g., Cohen, 1994; Hubbard & Lindsay, 2008; Nickerson, 2000; Sellke et al.,

2001; Wagenmakers, 2007). As an alternative, Jeffreys (1961) and Kass and Raftery (1995)

introduced the Bayes factor (BF). BF quantifies the relative support in the data for one hypothesis

against another, and in addition to that, cannot only provide evidence in favor of the alternative

hypothesis, but also provides evidence in favor of the null hypothesis. This approach for Bayesian

hypothesis evaluation is increasingly receiving attention from psychological researchers, see for

example Van de Schoot et al. (2017), Vandekerckhove et al. (2018), Wagenmakers et al. (2016).

Nevertheless, researchers, especially psychologists, find it difficult to calculate BF and several

software packages for Bayesian hypothesis evaluation have been developed. The most important

are the R package BayesFactor (Rouder et al., 2009), that can be found at

http://bayesfactorpcl.r-forge.r-project.org/ and the R package bain (Gu et al.,

2018) that can be found at

https://informative-hypotheses.sites.uu.nl/software/bain/. The latter is the

successor of the stand-alone software BIEMS (Mulder et al., 2012) that can be found at

https://informative-hypotheses.sites.uu.nl/software/biems/. Both BayesFactor

and bain are implemented in JASP (https://jasp-stats.org/). The main difference

between Approximate Adjusted Fractional Bayes Factor (AAFBF) implemented in bain and the

Jeffreys-Zellner-Siow Bayes factor implemented in BayesFactor is the choice of the prior

distribution. We focus on the AAFBF (to be elaborated in the next section) in this manuscript

because it is available for both the t-test and the Welch’s test.

When two independent group means are compared, there exist two specific cases in which

variances are either equal or unequal for the two groups, which correspond to t-test or Welch’s

test. The t-test is well-known, while Welch’s test is often extremely important and useful as

demonstrated by Delacre et al. (2017), Rosopa et al. (2013), Ruscio and Roche (2012). In the

Neyman-Pearson approach to hypothesis testing, the formulae for calculating the sample size are

given by an a priori power analysis for t-test and Welch’s test (Cohen, 1992; Faul et al., 2007).

http://bayesfactorpcl.r-forge.r-project.org/
https://informative-hypotheses.sites.uu.nl/software/bain/
https://informative-hypotheses.sites.uu.nl/software/biems/
https://jasp-stats.org/
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There is not yet a solid body of literature regarding sample size determination (SSD) for Bayesian

hypothesis evaluation, but Weiss (1997) and De Santis (2004, 2007) give different sample size

determination approaches for testing one mean of the normal distribution with known variance.

Kruschke (2013), Kruschke and Liddell (2018) discuss parameter estimation and use the posterior

distribution as a measure of evidence strength, and Schönbrodt and Wagenmakers (2018) and

Stefan et al. (2019) introduce Bayes factor design analysis applied to fixed-N and sequential

designs. This paper will elaborate on these approaches in the following manners: in addition to

the Bayesian t-test also the Bayesian Welch’s test will be considered. Both two-sided and

one-sided alternative hypotheses are considered. The sample size will be calculated such that the

probability that the Bayes factor is larger than a user specified threshold is at least [ if either the

null hypothesis or the alternative hypothesis is true. We use the dichotomy method to compute the

sample size very fast. Furthermore the sensitivity of SSD with respect to the specification of the

prior will be highlighted.

The outline of this paper is as follows. First, we give a brief introduction of the AAFBF, show

how it can be computed, discuss the specification of the prior distribution and sensitivity analyses.

Subsequently, sample size determination is introduced. Thereafter, we will discuss the role of

sample size determination in Bayesian inference. The paper continues with an introduction of the

ingredients required for sample size determination. Then, the algorithm used to determine the

sample size will be elaborated. Next, features of SSD are described. Thereafter, three examples

are presented that will help psychological researchers to use the R package SSDbain if they plan to

compare two independent means using the t-test or the Welch’s test. The paper ends with a short

conclusion.
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Bayes Factor

In this paper, the means of two groups, `1 and `2, are compared for both Model 1: the

within-group variances for Group 1 and 2 are equal,

H? = `1�1? + `2�2? + n? with n? ∼ # (0, f2), (1)

and Model 2: the within-group variances for Group 1 and 2 are not equal,

H? = `1�1? + `2�2? + n? with n? ∼ # (0, �1?f
2
1 + �2?f

2
2 ), (2)

where �1? = 1 for person ? = 1, · · · , # and 0 otherwise, �2? = 1 for person ? = # + 1, · · · , 2#

and 0 otherwise, # denotes the common sample size for Group 1 and 2, n? denotes the error in

prediction, f2 denotes the common within-group variance for Group 1 and 2, and f2
1 and f2

2

denote the different within-group variances for Group 1 and 2, respectively.

In this paper, the AAFBF (Gu et al., 2018; Hoijtink et al., 2019) is used to test hypotheses:

�0 : `1 = `2 against �1: `1 ≠ `2
a or against �2 : `1 > `2. The Bayes factor (BF) quantifies the

relative support in the data for a pair of competing hypotheses. Specifically, if BF01 = 5, the

support in the data is five times stronger for �0 than for �1; if BF01 = 0.2, the support in the data

is five times stronger for �1 than for �0. As was shown in Klugkist et al. (2005) the BF in terms

of comparing the constrained hypothesis �8 (8 = 0, 2) with the hypothesis �1 can be expressed in

a simple form:

BF81 =
58

28
, (3)

where 28 denotes the complexity of the hypothesis �8, and 58 denotes the fit of the hypothesis �8.

The complexity 28 (a hypothesis with smaller complexity provides more precise predictions) of �8

describes how specific �8 is, and the corresponding fit 58 (the higher the fit the more a hypothesis

a Note that, �1 is equivalent to the unconstrained hypothesis �D : `1, `2, in the sense that the Bayes factor for a
constrained hypothesis versus �1 is the same as versus �D
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is supported by the data) describes how well the data support �8. The formulae of the fit and

complexity are:

58 =

∫
-∈�8

61(- | y, J1, J2)3-, (4)

28 =

∫
-∈�8

ℎ1(- | y, J1, J2)3-, (5)

where 61 (- | y, J1, J2) denotes the posterior distribution, and ℎ1 (- | y, J1, J2) the prior

distribution of - under �1. In case of �2, 52 and 22 are the proportions of the posterior

distribution 61(·) and prior distribution ℎ1(·) in agreement with �2, respectively; in case of �1

Equation 3 reduces to the Savage-Dickey density ratio (Dickey, 1971; Wetzels et al., 2010). The

BF for �0 against �2 is:

BF02 =
BF01
BF21

=
50/20
52/22

. (6)

Actually, 61(·) is a normal approximation of the posterior distribution of `1 and `2:

61(- | y, J1, J2) = #
©­­«


ˆ̀1

ˆ̀2

 ,

f̂2/# 0

0 f̂2/#


ª®®¬ , (7)

when Model 1 is considered; and

61(- | y, J1, J2) = #
©­­«


ˆ̀1

ˆ̀2

 ,

f̂2

1 /# 0

0 f̂2
2 /#


ª®®¬ , (8)

when Model 2 is considered, where ˆ̀1 and ˆ̀2 denote the maximum likelihood estimates of the

means of Group 1 and Group 2, respectively. f̂2, f̂2
1 and f̂2

2 denote unbiased estimates of the

within-group variances. Due to the normal approximation, the general form of the AAFBF can be

used to evaluate hypothesis evaluation in a wide range of statistical models such as Structural
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Equation Modeling, logistic regression, multivariate regression, AN(C)OVA, etc. Therefore, it is

currently the most versatile method for Bayesian hypotheses evaluation.

The prior distribution is based on the fractional Bayes factor approach (Mulder, 2014; O’Hagan,

1995). It is constructed using a fraction of information in the data. As elaborated in Gu et al.

(2018) and Hoijtink et al. (2019) the prior distribution is given by:

ℎ1(- | y, J1, J2) = #
©­­«


0

0

 ,


1
1
f̂2

#
0

0 1
1
f̂2

#


ª®®¬ , (9)

where 1 is the fraction of information in the data used to specify the prior distribution, when

Model 1 is considered, and

ℎ1(- | y, J1, J2) = #
©­­«


0

0

 ,


1
1

f̂2
1
#

0

0 1
1

f̂2
2
#


ª®®¬ , (10)

when Model 2 is considered.

The prior distribution is NOT used to represent the prior knowledge about the effect size under �1

or �2. The prior distribution is chosen such that a default Bayesian hypothesis evaluation of �0 vs

�8 is obtained, that is, subjective input from the researcher is not needed. This is an advantage of

default Bayesian hypothesis evaluation because the vast majority of researchers want to evaluate

�0 vs �1 or �0 vs �2 and do not want to evaluate the corresponding prior distributions. The

default value of 1 used for the Bayesian t-test and Welch’s test equals 1
2# . This choice is inspired

by the minimal training sample idea (Berger & Pericchi, 1996, 2004), that is, turn a

noninformative prior into a proper prior using a small proportion of the information in the data.

For our situation this is equivalent to using one half observation from Group 1 and one half

observation from Group 2 is used, which is in total one observation. This makes sense because the

focus is on one contrast, that is, `1 − `2, which means that one parameter needs to be estimated.
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This choice is too some extend arbitrary, for example, we could also use 21 (one person is needed

to estimate each mean) or 31 (one person for each mean and the half for the residual variance),

which still maintains the spirit of the minimal training sample approach. In summary, the goal is

to compare �0 with �8 (8 = 1, 2) by means of Bayes factor, but not comparing the prior

distribution of �0 with �8 (8 = 1, 2) through the Bayes factor. To achieve this, the prior

distributions are calibrated such that �0 and �8 can be evaluated without requiring user input.

However there is some uncertainty in the calibrating, hence the AAFBF can be computed using

the fractions 1, 21, and 31, and the required sample sizes can be computed accordingly.

As an illustration, Table 1 and Table 2 list the BF for the comparison of �0 with the two-sided

alternative �1 and the one-sided alternative �2, respectively, when equal within-groups variances

are considered (Model 1). From Table 1, we can see that when �0 is true (e.g., the entry with 1),

the support in the observed data is 13 times larger for �0 than for �1; when �1 is true, the support

in the observed data is 22 (1/0.045) times larger for �1 than for �0. Table 2 shows that the data

were nearly 18 times more likely to support �0 when �0 is true; the support in the data is more

than 45 (1/0.022) times more likely to support �2 when �2 is true. Therefore, for the same sample

size per group, it is much easier to get strong evidence for the one-sided than for the two-sided

hypothesis (e.g., compare the corresponding shaded areas of the columns BF01 in Table 1 and

BF02 in Table 2, BF20=1/BF02 is larger than BF10=1/BF01). The fit is higher for the true

hypothesis (e.g., see column 50 in Table 1, 50 = 2.816 when �0 is true is larger than 50 = 0.009

when �1 is true). As can be seen in Tables 1 and 2 (bottom two panels) the BF is sensitive to the

choice of the fraction. The complexity 20 becomes larger for �0 if the fraction increases (from

0.209 to 0.295, then to 0.362), while the complexity 22 is not affected by the fraction for �2 (0.5

for any value of fraction). This is because the complexity of a hypothesis specified using only

inequality constraints is independent of the fraction, see Mulder (2014) for a proof. The

corresponding BF for �0 becomes smaller (e.g., in the column BF01, BF decreases from 13.49 to

9.54, then to 7.79), and the BF for �2 does not change.
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Criteria for Sample Size Determination

For the Neyman-Pearson approach to hypothesis testing power analysis renders an indication of

the sample sizes needed to reject the null-hypothesis with a pre-specified probability if it is not

true. If the sample sizes are sufficiently large, under-powered studies can be avoided (Maxwell,

2004). A power analysis is conducted prior to a research study, and can be executed if three

ingredients, Type I error rate, Type II error rate, and effect size are given. The main difficulty is

getting an a priori educated guess of the true effect size. In practice often one of two approaches

to choose the effect size is used: use an estimate of the effect size based on similar studies in the

literature, experts’ opinion or a pilot study (Anderson et al., 2017; Sakaluk, 2016); or, use the

smallest effect size that is considered to be relevantly different from zero for the study at hand

(Perugini et al., 2014). If the chosen effect size is smaller than the unknown true effect size, the

sample sizes will be larger than necessary, which can be costly or unethical, and if the chosen

effect size is larger than the unknown true effect size, the sample sizes will be too small and the

resulting study will be underpowered.

When the Bayes factor is used for hypothesis testing, sample size determination instead of power

analysis is used although the goals are similar. The main ingredients for SSD in a Bayesian

framework are explained in Figure 1. Panel (a) on the left: t-test, sample size # = 26 per group,

distribution of BF01 when data are repeatedly sampled from a population in which �0 : `1 = `2 is

true. Panel (b) on the right: t-test, sample size # = 104 per group, distribution of BF10 when data

are repeatedly sampled from a population in which `1 ≠ `2, but with the addition that the effect

size has to be chosen (here we use effect size 3 = 0.5 to simulate data). We face the same problem

as for power analysis, namely an unknown true effect size, but as will be elaborated in the next

section, the combination of SSD and Bayesian updating can be used to address this problem.

Sample size will be determined such that %(BF01 > BFCℎA4Bℎ |�0) ≥ [ and

%(BF10 > BFCℎA4Bℎ |�1) ≥ [, that is, the probability that BF01 is larger than a user specified

threshold value if �0 is true should be at least [, and the probability that BF10 is larger than the
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threshold value if �1 is true should be at least [. This is in line with power analysis in

Neyman-Pearson approach to hypothesis testing in which the Type I error rate U and Type II error

rate V are given beforehand. In the Bayesian framework, instead of Type I error rate and Type II

error rates, we use the probability that the Bayes factor is larger than BFCℎA4Bℎ under the null

hypothesis and under the alternative hypothesis. With respect to the choice of BFCℎA4Bℎ, two

situations can be distinguished. Situation 1: if one wants to explore which hypothesis is more

likely to be supported, one can set BFCℎA4Bℎ=1. Situation 2: if one wants to find compelling

evidence to support the true hypothesis, one can set BFCℎA4Bℎ equal to 3, 5 or 10, depending on the

strength of the evidence that is required. With respect to the choice of [ it should be noted that

1 − [ are, for the null and alternative hypotheses, the Bayesian counterparts of the Type I and the

Type II error rates. In high-stakes research, the probability of an erroneous decision should be

small, therefore a larger value of [ such as 0.90 should be used. In low-stakes or more exploratory

research erroneous decisions may be less costly and smaller values like [ = 0.80 could be used.

0.80
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(a) # = 26 when �0 is true
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(b) # = 104 and 3 = 0.5 when �1 is true

Figure 1. The sampling distribution of BF01 under �0 and BF10 under �1. The vertical dashed line denotes
the BFCℎA4Bℎ = 3. The grey area visualizes [ = 0.80. Note that, as will be illustrated in Table 3, 4, and 5
later in this paper, the sample size is the maximum of 26 and 104.

The Role of Sample Size Determination in Bayesian Inference

In the Bayesian framework, updating (Rouder, 2014; Schönbrodt & Wagenmakers, 2018;

Schönbrodt et al., 2017) can be seen as an alternative for sample size determination that does not

require specification of the effect size under the alternative hypothesis. Bayesian updating
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proceeds along the following steps: i) specify an initial sample size per group and the required

support in terms of BF; ii) collect data with the initial sample size; iii) compute the BF; iv) if the

support in favor of either �0 or �1 is large enough the study is finished; if the support is not large

enough, increase the sample size and return to iii). Because in the Bayesian framework the goal is

not to control the Type I and Type II error rates (the goal is to quantify the support in the data for

the hypotheses under consideration) this is a valid procedure.

With the availability of Bayesian updating and sample size determination, two strategies can be

used to obtain sufficient support for the hypotheses under consideration, which will be described

in the next two sub-sections: i) sample size determination as a pre-experimental phase in case

updating is not an option; and, ii) sample size determination followed by updating.

Sample Size Determination as a Pre-experimental Phase

If updating can be used, it is an approach that avoids pre-specification of the effect size under the

alternative hypothesis and is a worthwhile option to pursue. However, updating can not always be

used or sample size determination is a required step before updating can be executed. Consider

the following situations. Situation 1. The population of interest is small, for instance, persons with

a rare disease or cognitive disorder. The control and treatment groups will very likely not be large.

Updating is in this situation not an option. However, if, for example, a researcher is interested to

detect an effect size of Cohen’s 3 (for the t-test) equal to .8 with a probability [ = 0.80 that the

Bayes factor is at least 5, the sample size required is 67 per group (see Table 5, which will be

discussed after the next two sections). Since such a large sample size can not be obtained, it is

decided not to execute the experiment in this form. Situation 2. Next month a survey will start in

which 150, currently single, men and women will be tracked for 21 years. Updating is not an

option in such a longitudinal cohort study, but Table 4 shows that 104 persons per group are

needed to have a probability of at least [ = 0.80 to obtain a Bayes factor larger than 3 if the effect

size is Cohen’s 3 = .5. Since the effect size is expected to be 0.5, the study can be actually

conducted because the sample size is 150 persons per group. Situation 3. The researchers have to
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submit the research plans to the (medical) ethical committee. They want to use updating, but both

the researchers and the committee’s members may want an indication of the sample size needed to

obtain sufficient support for different effect sizes under the alternative hypothesis. Only with these

numbers they can argue that they have sufficient funding and research time to execute the research

plan. Sample size determination can be used to obtain an indication of the sample sizes needed to

obtain sufficient support for different effect sizes. These numbers can be included in the

researcher’s research proposal for the (medical) ethical committee.

Sample Size Determination Followed by Updating

When sample size determination is used, however, as will be highlighted using Situations 4 and 5,

having to specify the effect size under the alternative hypothesis may have two undesirable

consequences. Consider the following situations. Situation 4. If the alternative hypothesis is true,

the researchers expect an effect size Cohen’s 3 = .5. They determine the sample sizes such that an

effect size of Cohen’s 3 (for the t-test) equal to .5 with [ = 0.80 that the Bayes factor is at least 3 is

detected, that is, 104 persons per group. After collecting data they obtain BF01 = 2.5. This is an

undesirable result because they did not achieve the desired support. They can remedy this by

updating, that is, increasing the sample size until the Bayes factor is at least 3. The latter is only

possible if updating is an option. Situations 1 and 2 are examples of cases where this is not an

option. Situation 5. Analogous to Situation 4, but now the researchers find BF01 = 8.3. This is a

problem in the sense that they spent more funds and research time than would have been

necessary. The researchers plan and are able to collect the data from 104 persons per group. If the

research design permits this they can update until they reach the required support (which may be

achieved at a sample size smaller than 104 per group), which will save funds and research time.

The combination of sample size determination and updating is the most powerful approach,

whenever it is applicable.
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Ingredients for Sample Size Determination

Sample size determination for the Bayesian t-test and the Bayesian Welch’s test is implemented in

the function SSDttest of the R package SSDbain available at

https://github.com/Qianrao-Fu/SSDbain. In this section we introduce and discuss the

necessary input for sample size determination with the SSDttest function. In the sections that

follow we will provide the algorithms used for Bayesian SSD, and a discussion of SSD properties

using three tables for Cohen’s 3 equal to .2, .5, and .8, respectively. Furthermore, three examples

of the application of SSDttest are presented.

After loading the SSDbain library, the following call is used to determine the sample size per

group:

library(SSDbain)

SSDttest(type=’equal’,Population_mean=c(0.5,0),var=NULL,BFthresh=3,eta=0.80,Hypothesis

=’two-sided’,T=10000)

The following ingredients are used:

1. type, a string that specifies the type of the test. If type=’equal’, the t-test is used; if

type=’unequal’, the Welch’s test is used. The default setting is type=’equal’. If one

expects (based on prior knowledge or prior evidence) that the two within-group variances

are equal, choose the Bayesian t-test, otherwise, choose the Bayesian Welch’s test (Delacre

et al., 2017; Ruscio & Roche, 2012; Ruxton, 2006).

2. Population_mean, vector of length 2 specifying the population means of the two groups

under �1 or �2. The default setting is Population_mean=c(0.5,0) when the effect size

is 3 = 0.5. Note that, if var=NULL and the population mean in Group 2 equals 0, the

population mean in Group 1 is identical to Cohen’s 3.

3. var, vector of length 2 giving the two within-group variances. If type=’equal’, the

https://github.com/Qianrao-Fu/SSDbain
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default is var=c(1,1); if type=’unequal’, the default is var=c(4/3,2/3). Of course,

any values of the variances can be used as input for the argument var.

4. BFthresh, a numeric value that specifies the magnitude of Bayes factor, e.g., 1, 3, 5, 10.

The default setting is BFthresh=3. If one chooses 5, one requires that BF01 is at least 5 if

the data comes from a population in which �0 is true, and the BF10 is at least 5 if the data

comes from a population in which �1 or �2 is true. The choice for the BFthresh value is

subjective meaning that different values may be chosen by different researchers, for different

studies and in different fields of science. A large BFthresh value may be chosen in

high-stakes research were the degree of support of a hypothesis against another needs to be

large. In pharmaceutical research for instance, the chances to have a new drug for cancer to

be approved may be larger if there is high support for it increasing life expectancy as

compared to an existing drug, especially so when the new drug may have side-effects. A

lower BFthresh value may be chosen in low-stakes research. An example also comes from

pharmaceutical research, where a new headache relief drug and an existing competitor are

compared on their onset of action, and side effects are not likely to occur.

5. eta, a numeric value that specifies the probability that the Bayes factor is larger than the

BFthresh if either the null hypothesis or the alternative hypothesis is true, e.g., 0.80, 0.90.

The default setting is eta=0.80.

6. Hypothesis, a string that specifies the hypothesis. Hypothesis=’two-sided’ when the

competing hypotheses are �0 : `1 = `2, �1 : `1 ≠ `2; Hypothesis=’one-sided’ when

the competing hypotheses are �0 : `1 = `2, �2 : `1 > `2. The default setting is

Hypothesis=’two-sided’. This argument is used to decide whether a two-sided

(labelled �1 earlier in the paper) or a one-sided (labelled �2 earlier in the paper) alternative

hypothesis is to be used. For example, one may wish to compare a new drug with an

existing drug. If the researcher is not certain if the new drug will be more or less effective

than the existing drug, a two-sided alternative hypothesis should be chosen. If the
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researcher has strong reasons to believe the new drug is more effective than the old one, a

one-sided alternative hypothesis should be chosen.

7. T, a positive integer that specifies the number of data sets sampled from the null and

alternative populations to determine the required sample size. The default setting is

T=10000, and the recommended value is at least 10000. This argument will be elaborated

in the next section.

The output results include the sample size required and the corresponding probability that the

Bayes factor is larger than the BFCℎA4Bℎ when either the null hypothesis or the alternative

hypothesis is true:

Using N=xxx and b

P(BF0i>BFthresh|H0)=xxx

P(BFi0>BFthres}|Hi)=xxx

Using N=xxx and 2b

P(BF0i>BFthresh|H0)=xxx

P(BFi0>BFthresh|Hi)=xxx

Using N=xxx and 3b

P(BF0i>BFthresh|H0)=xxx

P(BFi0>BFthresh|Hi)=xxx

where xxx will be illustrated in the examples that will be given after the next section.

Algorithm Used in Bayesian Sample Size Determination

Figure 2 presents Algorithm 1 which is the basic algorithm used to determine the sample size.

The ingredients in the first four Steps have been discussed in the previous section. In Step 5,
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) = 10000 data sets are sampled from each of the populations of interest (e.g., �0 vs �1), starting

with a sample size # = 10 per group. In Step 6 the Bayes factor for each data set sampled from

each hypothesis is computed. In Step 7, the probabilities %(BF01 > BFCℎA4Bℎ |�0) and

%(BF10 > BFCℎA4Bℎ |�8) are computed. If both are larger than [ specified in Step 4, the output

presented in the previous section is provided. If one or both are smaller than [, # is increased by

1 per group and the algorithm restarts in Step 5. To be able to account for the sensitivity of the

Bayes factor to the specification of the prior distribution, this algorithm is executed using fractions

equal to 1, 21, and 31. The Appendix presents a refinement of Algorithm 1 that reduces the

number of iterations in Algorithm 1 to maximally 12.

Features of SSD

In this section features of SSD will be discussed. This will be done using Tables 3-5, which were

constructed using SSDttest. The tables differ in effect size: Table 3 is for effect size 3 = 0.2,

Table 4 is for effect size 3 = 0.5, and Table 5 is for effect size 3 = 0.8. The following features will

be discussed: difference between the Bayesian t-test and Bayesian Welch’s test, effect of the effect

sizes, effect of the fraction 1 used to construct the prior distribution, and comparison of the

two-sided and one-sided alternative hypothesis.

There seems to be little difference between the t-test and Welch’s test with respect to the sample

size required and the corresponding probability that the Bayes factor is larger than BFCℎA4Bℎ if

either the null or the alternative hypothesis is true. For example, for BFCℎA4Bℎ=3, two-sided testing,

effect size 3 = 0.5, and [ = 0.80 (see Table 4), the sample size is 104 per group, and the

probability that the Bayes factor is larger than 3 if �0 is true is 0.92, and the probability that the

Bayes factor is larger than 3 if �1 is true is 0.80 for the t-test. The sample size is 104 per group,

and the probability that the Bayes factor is larger than 3 if �0 is true is 0.92, and the probability

that the Bayes factor is larger than 3 if �1 is true is 0.80 for Welch’s test.

As expected, the sample size required decreases as the effect size under �8 increases. For
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example, for the two-sided t-test, BFCℎA4Bℎ=3 and [ = 0.80, the sample sizes required for effect

sizes 0.2, 0.5, and 0.8 are 769, 104, and 36 per group, respectively. This is because an increase of

the effect size makes the alternative more distinguishable from the null hypothesis. However, for

some special cases, the sample size required for effect size 0.5 and 0.8 are the same, for example

for the two-sided t-test, BFCℎA4Bℎ=5 and [ = 0.80 if the fraction 21 is used for the prior

distribution. The reason is that the sample size required is the maximum of the sample size

required if the null hypothesis is true and the sample size required if the alternative hypothesis is

true. In cases like the examples given, the maximum sample size is determined by the null

hypothesis, which is the same for effect size 0.5 and 0.8.

The sample size required increases with the fraction going from 1 to 21, and then to 31 if the null

hypothesis is true, while the opposite relation is found if the alternative hypothesis is true. This

feature can be explained as follows: according to Equations (9) and (10), as the fraction gets

larger, the prior variance decreases, the relative complexity 20 gets larger, thus the Bayes factor

under �0 gets smaller. Consequently, the sample size required increases. Conversely, the sample

size required when the alternative hypothesis is true decreases. This feature highlights that a

sensitivity analysis is important: results depend on the fraction of information used to specify the

prior distribution.

As can be seen in Tables 3-5, the required sample sizes for one-sided testing are always smaller

than or about equal to the sample sizes required for two-sided testing. Therefore, if a directional

hypothesis can be formulated, a one-sided testing is preferred over a two-sided testing.

Practical Examples of SSD

In this section three examples of SSD will be given. The examples use the function SSDttest

because it allows researchers to choose Cohen’s 3, BFCℎA4Bℎ, and [ as they desire. As an

alternative, researchers can also consult Table 3, 4, and 5, although there sample sizes are only

given for a limited number of values for Cohen’s 3, BFCℎA4Bℎ and [.
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Example 1. Researchers want to conduct an experiment to investigate whether there is a

difference in pain intensity as experienced by users of two types of local anesthesia. The

researchers would like to detect a medium effect size 3 = 0.5 with a two-sided t-test, when either

�0 or �1 with 3 = 0.5 is true, such that they have a probability of 0.80 that the resulting Bayes

factor is larger than 3. The researchers choose BFCℎA4Bℎ = 3 because they want to get a compelling

evidence for the high-stakes experiment that one of the two types of anesthesia is better able to

reduce the pain intensity for users. As elaborated below, the researchers can combine SSD with

Bayesian updating to i) stop sampling before a sample size of # = 104 per group if the true effect

size is larger than 3 = 0.5 used for SSD, or ii) to continue sampling beyond # = 104 per group if

the true effect size is smaller than 0.50. The sample size required to detect 3 = 0.5 is obtained

using the following call to SSDttest:

SSDttest(type=’equal’,Population_mean=c(0.5,0),var=c(1,1),BFthresh=3,eta=0.80,Hypothesis=

’two-sided’,T=10000)

The results are as follows:

Using N=104 and b

P(BF01>3|H0)=0.92

P(BF10>3|H1)=0.80

The following can be learned from these results:

The researchers need to collect 104 cases per type of local anesthesia to get a probability of 0.92

that the resulting Bayes factor is larger than 3 when �0 is true, and to get a probability of 0.80 that

the resulting Bayes factor is larger than 3 when �1 is true and 3 = 0.5.

The researchers will execute the Bayesian updating as follows. First, the researchers will start with

25% of the sample size per group, that is, 26 cases per group. If the resulting BF01 or BF10 is

larger than 3, the desired support is achieved and updating can be stopped. Otherwise, the
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researchers can add 26 cases per group and recompute and re-evaluate the Bayes factors. Once the

threshold of 3 has been achieved, this process can be stopped, otherwise it can be repeated, also

beyond a sample size of 26 cases per group. The SSD executed before these researchers started

collecting data is useful because it gives an indication of the sample size that are required to

evaluated �0 and �1. Updating ensures that the researchers use their resources optimally.

Example 2. Researchers want to carry out a test to explore whether there is a difference between
the yield obtained with a new corn fertilizer and with a current fertilizer. They expect the new
fertilizer is more effective than the current one. The researchers want to determine the number of
field plots used in a study of the test to detect an effect size 3 = 0.2 with a one-sided t-test. When
either �0 or �2 with 3 = 0.2 is true they want to have a probability of 0.90 that the resulting Bayes
factor is larger than 1. The researchers used BFCℎA4Bℎ = 1 and [ = 0.90 because they want to get a
Bayes factor to point to the true hypothesis with a high probability. They are not necessarily
interested in strong evidence for the true hypothesis. The sample size required is obtained using
the following call to SSDttest:

SSDttest(type=’equal’,Population_mean=c(0.2,0),var=c(1,1),BFthresh=1,eta=0.90,Hypothesis

=’one-sided’,T=10000)

The results are as follows:

Using N=676 and b

P(BF02>1|H0)=0.99

P(BF20>1|H2)=0.90

The following can be learned from the output:

The researchers need to collect 676 field plots per fertilizer to get a probability of 0.99 that the

resulting Bayes factor is larger than 1 if �0 is true, and a probability of 0.90.16 that the resulting

Bayes factor is larger than 1 if �2 is true.

Example 3. Researchers wish to compare two weight loss regimens to determine whether there is

a difference in the mean weight loss. Past experiments have shown that the standard deviations are
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different for these two regimens. Researchers want to determine the sample size required to detect

the effect size 3 = 0.5 with a two-sided Welch’s test. When either �0 or �1 is true they want to

have a probability of 0.80 that the resulting Bayes factor is larger than 3. They also want to

execute a sensitivity analysis and therefore look at the sample sizes required for 1, 21, and 31.

The required sample size is obtained using the following call to SSDttest:

SSDttest(type=’unequal’,Population_mean=c(0.5,0),var=c(1.33,0.67),BFthresh=3,eta=0.80,

Hypothesis=’two-sided’,T=10000)

The results are as follows:

Using N=104 and b

P(BF01>3|H0)=0.92

P(BF10>3|H1)=0.80

Using N=96 and 2b

P(BF01>3|H0)=0.87

P(BF10>3|H1)=0.80

Using N=91 and 3b

P(BF01>3|H0)=0.83

P(BF10>3|H1)=0.80

From the results the following can be learned:

The output from SSDttest can be used to perform a sensitivity analysis. As can be seen the

required sample sizes for 1, 21 and 31 are 104, 96, and 91 per group, respectively. This implies

that if the researchers plan to execute a sensitivity analysis they should aim for a sample size of at

least 104 per group. The probabilities of supporting �0 and �1 when they are true become more

similar with bigger fractions of information. If this is a desirable feature for the researchers, they
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can use 31 which renders a required sample size of # = 91 per group and [ is about equal to 0.80

both when �0 and �1 are true.

Conclusion

The function SSDttest implemented in the R package SSDbain

(https://github.com/Qianrao-Fu/SSDbain) has been developed for sample size

determination for two-sided and one-sided hypotheses under a Bayesian t-test or Bayesian Welch’s

test using the AAFBF as implemented in the R package bain. This function was used to construct

sample size tables that are counterparts to the frequently used tables in Cohen (1992). If the tables

are not applicable to the situation considered by researchers, the SSDbain package can be used.

With the growing popularity of Bayesian statistics (Van de Schoot et al., 2017), it is important

tools for sample size determination in the Bayesian framework become available. In this

manuscript, we developed software to calculate sample sizes within the framework of Bayesian

t-test and Bayesian Welch’s test hypotheses using time-efficient algorithms. However, the

SSDbain package also has its limitation: we focussed on the AAFBF, but as was shortly

highlighted in the introduction to this paper, there are other Bayes factors researchers may use.

Furthermore, we focussed on the Bayesian t-test and Welch’s test, but in our future research we

will extend to other statistical models, such as Bayesian ANOVA, ANCOVA, linear regression,

and normal linear multivariate models.

https://github.com/Qianrao-Fu/SSDbain
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Table 1
Fit and complexity when �0 is true or �1 is true. H̄1 and H̄2 are the sample means of the two groups, B2 is
the sample variance of the two groups, # is the sample size per group.

H̄1 H̄2 B2 # 50 20 BF01
�0

1
0 0 1 100 2.816 0.209 13.488

�1 0.5 0 1 100 0.009 0.209 0.045
�0 21 0 0 1 100 2.816 0.295 9.537
�1 0.5 0 1 100 0.009 0.295 0.032
�0 31 0 0 1 100 2.816 0.362 7.787
�1 0.5 0 1 100 0.009 0.362 0.026

Table 2
Fit and complexity when �0 is true or �2 is true. H̄1 and H̄2 are the sample means of the two groups, B2 is
the sample variance of the two groups, # is the sample size per group.

H̄1 H̄2 B2 # 50 20 52 22 BF01 BF21 BF02
�0

1
0 0 1 100 2.816 0.209 0.379 0.500 13.488 0.758 17.788

�2 0.5 0 1 100 0.009 0.209 1.000 0.500 0.045 1.999 0.022
�0 21 0 0 1 100 2.816 0.295 0.379 0.500 9.537 0.758 12.578
�2 0.5 0 1 100 0.009 0.295 1.000 0.500 0.032 1.999 0.016
�0 31 0 0 1 100 2.816 0.362 0.379 0.500 7.787 0.758 10.270
�2 0.5 0 1 100 0.009 0.362 1.000 0.500 0.026 1.999 0.013
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Appendix: Algorithm 2

We have described the basic Algorithm 1 used to determine the sample size. In this appendix a

refinement of Algorithm 1 is described that reduces the number of iterations of Algorithm 1 to

maximally 12. It is very time consuming to iterate Steps 5-7 many times in Algorithm 1,

especially if the alternative hypothesis is one-sided. The number of iterations will be reduced if

Step 7 from Algorithm 1 is replaced by Algorithm 2. The basic principle of Algorithm 2 is to

gradually adjust the sample size using a dichotomy algorithm until %(BF08 > BFCℎA4Bℎ |�0) and

%(BF80 > BFCℎA4Bℎ |�8) (8 = 1 or 2) hold for sample sizes ranging between #min = 10 and

#max = 1000. If it turns out that #max is too small, its value will be increased. Using Algorithm 2

the number of iterations will be at most 12 ($ (log2(1000 − 10)) + 2 = 12) see

https://en.wikipedia.org/wiki/Binary_search_algorithm for a detail.

(1) If both %(BF08 > BFCℎA4Bℎ |�0) and %(BF80 > BFCℎA4Bℎ |�8) (8 = 1 or 2) are larger than [, set

#max = #mid; otherwise, set #min = #mid, where #mid = (#min + #max)/2; and continue with

(2).

(2) If #mid = #min + 1, then # = #mid, and the algorithm stops and output is provided; otherwise

return to Step 5 from Algorithm 1 with # equal to #mid.

https://en.wikipedia.org/wiki/Binary_search_algorithm
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