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Abstract

This paper presents a new statistical method and accompanying
software for the evaluation of order constrained hypotheses in struc-
tural equation models (SEM). The method is based on a large sample
approximation of the Bayes factor using a prior with a data-based cor-
relational structure. An e�cient algorithm is written into an R package
to ensure fast computation. The package, referred to as Bain, is easy
to use for applied researchers. Two classical examples from the SEM
literature are used to illustrate the methodology and software.
Keywords: Approximate Bayesian procedure, Bayes factors, Order
constrained hypothesis, Structural equation model.

1 Introduction

Applied researchers have become increasingly interested in the evaluation
of order constrained hypotheses because the traditional null hypothesis is
often not a realistic representation of the population of interest (Cohen,
1994; Royall 1997, pp.79-81). In structural equation models, researchers
may have explicit theories or expectations, for example, about the ordering
of the relative e�ects of independent variables on a dependent variable or
researchers may expect which indicator for a latent variable is dominant
over the other indicators. These expectations can be represented by order
constrained hypotheses among the model parameters. Order constrained
hypotheses can be evaluated using either the frequentist approach by means
of p values (see, e.g., Silvapulle and Sen, 2005; van de Schoot, Hoijtink, and
Deković, 2010) or the Bayesian approach by means of Bayes factors (see,
e.g., van de Schoot, Hoijtink, Hallquist, and Boelen, 2012; Klugkist, Laudy,
and Hoijtink, 2005; Hoijtink, 2012). In this paper, the Bayes factor (Kass
and Raftery, 1995) is used as a criterion for assessing the hypotheses because
p values can only reject a null hypothesis. Bayes factors on the other hand
are able to measure the relative evidence in the data between multiple non-
nested hypotheses containing order constraints (Wagenmakers, 2007). For
this reason, Bayes factors can be viewed as a more generally applicable tool
for statistical hypothesis testing than classical p values.

During the past decade, Bayesian evaluation of hypotheses with order
(or inequality) constraints on the parameters of interest has been stud-
ied for various statistical models. Besides statistical theory development,
these studies rendered software packages that can be used by applied re-
searchers, see Hoijtink (2012, pp.179) for an overview. As a pioneer, Klugk-
ist, Laudy, and Hoijtink (2005) presented a Bayesian approach to evalu-
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ate analysis of (co)variance models (ANOVA or ANCOVA) with order con-
straints on the means. The study for ANOVA models was further devel-
oped by Kuiper and Hoijtink (2010) for the comparison of means using both
Bayesian and non-Bayesian methods. This research resulted in a software
package ConfirmatoryANOVA (Kuiper, Klugkist, and Hoijtink, 2010). There-
after, Mulder, Hoijtink, and Klugkist (2010) extended the previous study
to multivariate linear models (MANOVA, repeated measures, multivariate
regression), which is implemented in the software package BIEMS (Mulder,
Hoijtink and, de Leeuw, 2012). Finally, Gu, Mulder, Decović, and Hoijtink
(2014) explored a general Bayesian procedure using a di�use normal prior
distribution with a diagonal covariance structure. Although this methodol-
ogy provided reasonable default outcomes of the Bayes factor, the diagonal
prior covariance structure can be criticized because the resulting Bayes fac-
tor is not invariant for linear one-to-one transformations of the data. The
invariance property is important because it ensures that the relative evidence
between two hypotheses, as quanti�ed by the Bayes factor, does not depend
on the arbitrary parameterizations of the model (Mulder, 2014a).

To illustrate the issue, consider three repeated measurements coming
from a multivariate normal distribution, i.e., xi = (xi1, xi2, xi3)T ∼ N(θ,Σ),
where θ = (θ1, θ2, θ3)T is a vector containing the measurement means and
Σ is the measurement covariance matrix. Now assume we are interested in
testing a monotonic increase of the means against an unrestricted alternative:
H1 : θ1 < θ2 < θ3 versus Hu : θ ∈ R3 where R3 denotes the 3-dimensional
real vector space. A standard choice for the prior under H1 is to use a
truncation of the unconstrained prior under Hu in the order constrained
space under H1 (e.g., Klugkist et al., 2005). This results in the following
expression of the Bayes factor:

B1u =
Pr(θ1 < θ2 < θ3|X, Hu)

Pr(θ1 < θ2 < θ3|Hu)
, (1)

which corresponds to the ratio of the posterior probability that the con-
straints of H1 are satis�ed under Hu and the prior probability that the
constraints of H1 are satis�ed under Hu. Now consider a very vague prior
with a multivariate normal distribution for the measurement means under
Hu with a diagonal covariance structure, πu(θ) = N(0, ωI3), where I3 is
a 3-dimensional identity matrix and ω is chosen large enough so that the
posterior probability in the numerator in (1) is virtually independent of
the prior, say, ω = 106. This prior results in a prior probability that
the constraints hold that is equal to 1

6 (for any choice of ω, see Klugkist,
Laudy, and Hoijtink, 2005), and thus, the Bayes factor is equal to the pos-
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terior probability that the measurement means increase multiplied by 6, i.e.,
B1u = 6× Pr(θ1 < θ2 < θ3|X, Hu).

Now we consider a one-to-one transformation of the data where the �rst
element corresponds to the di�erence between the �rst and second repeated
measurement, the second element corresponds to the di�erence between the
second and third repeated measurement, and the third element corresponds
to the third repeated measurement, i.e., yi = (yi1, yi2, yi3) = (xi1−xi2, xi2−
xi3, xi3). Again the transformed observations follow a multivariate normal
distribution, say, yi ∼ N(η,Ψ), where the �rst, second, and third element
of η are equal to the �rst mean di�erence, the second mean di�erence, and
the mean of the third observation. The equivalent hypothesis test in this
parameterization comes down to H1 : η1 < 0, η2 < 0, η3 ∈ R1 versus Hu :
η ∈ R3. Similarly as in (1), the Bayes factor is now given by

B1u =
Pr(η1 < 0, η2 < 0|Y, Hu)

Pr(η1 < 0, η2 < 0|Hu)
.

Again we consider independent normal priors for the mean parameters, i.e.,
πu(η) = N(0, ωI3), with ω very large. In this case the prior probability
that the constraints of H1 hold under Hu equals 1

4 , and consequently, the
Bayes factor is equal to the posterior probability of negative mean di�erences
(which is equivalent to an increase of the measurement means) multiplied by
4, i.e., B1u = 4 × Pr(η1 < 0, η2 < 0|Y, Hu). Thus, the Bayes factor di�ers
with a factor of 4

6 for these two parameterizations, which is quite large. For
larger dimensions with, say, 10 measurements, the violation will be even
larger (Mulder, 2014a; 2014b). This is highly undesirable. To resolve this
we present a new default prior resulting in a new Bayesian testing procedure
for testing order constrained hypotheses in SEM which avoids this issue.
The general idea is to let the prior covariance structure of the parameters of
interest to depend on the covariance structure in the sample.

The second main contribution is the development of an e�cient algo-
rithm for computing the prior and posterior probability that a set of order
(inequality) constraints hold, which are key quantities when computing Bayes
factors. This contribution is needed because computing these probabilities
as the proportion of draws satisfying the constraints can be very ine�cient
when the hypotheses contain many order constraints on the parameters of
interest. In this case the posterior and prior probability that the constraints
hold can be very small and therefore billions of draws may be needed in order
to get accurate estimates of the probabilities and the resulting Bayes factors
(Hoijtink, 2012). For this reason an e�cient algorithm is presented that con-
sists of roughly two steps. First, the probability of a set of order constraints
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is written as product of conditional probabilities. Second, the conditional
probabilities are computed as the arithmetic mean of conditional probabili-
ties which have analytic expressions in the Gibbs sampler. As will be seen
this new algorithm is much more e�cient than the use of the proportion of
draws satisfying the constraints.

The algorithm is implemented into an R package referred to as Bain to
ensure fast computation. For the computation of the Bayes factor using Bain
the user only needs to provide the estimates of the parameters of interest
and the inverse of the Fisher information matrix of the parameters which
serves as the posterior covariance matrix. These statistics can for instance
be obtained using the lavaan package (Rosseel, 2012) in R for the analysis of
structural equation models (SEM). Other software, such as Mplus, can also
be used to obtain these statistics, but here we will use lavaan as the basis
for our analyses because it is free.

In what follows, Section 2 shortly introduces SEM models and de�nes
order constrained hypotheses. For the evaluation of order constrained hy-
potheses, the Bayes factor as a criterion is brie�y introduced in Section 3.
Subsequently, Section 4 speci�es prior and posterior distributions which are
the determinants of the Bayes factor. Thereafter, the procedure for the
computation of Bayes factors is presented in Section 5 in which seven sub-
sections describe the principles and algorithms used. To illustrate how to
evaluate order constrained hypotheses using our program, Section 6 analyzes
two classic SEMmodels: con�rmatory factor analysis and multiple regression
models with latent variables. Finally, a user manual is provided in Appendix
B such that researchers can use the implementation in Bain successfully for
the analysis of their own data.

2 Order constrained structural equation models

2.1 Structural equation models

The structural equation model (SEM) mainly consists of two components,
i.e., the measurement model which expresses the relations between latent
variables and their indicators, and the structural model which expresses the
relations between endogenous and exogenous (latent) variables, see for ex-
ample Jöreskog and Sörbom (1979). The measurement model can be written
by

y = Λyη + εy

x = Λxξ + εx (2)
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where y and x denote the vectors of endogenous and exogenous observed
variables, respectively, η and ξ denote the vectors of endogenous and exoge-
nous latent variables, respectively, Λy and Λx are the corresponding matrices
of factor loadings, and the measurement errors εy and εx have zero means
and covariance matrices Ψεy and Ψεx , respectively.

The structural model represents the relations among latent variables:

η = Bη + Γξ + δ, (3)

where B and Γ are matrices of regression coe�cients, and δ with mean of 0
and covariance matrix of Ψδ is the error term. In addition,

Φη = (I−B)−1(ΓΦξΓ
T + Ψδ)(I

T −BT )−1, (4)

where Φη and Φξ are the covariance matrices of the latent variables η and
ξ, respectively. Note that both η and ξ may contain observed variables if
one wants to model the relationship between observed variables. This can be
done by creating single-indicator latent variables (with a �xed factor loading
of 1, and zero measurement error) corresponding to each observed variable.

The general framework of SEM is described by equations (2) and (3)
which can be speci�ed using lavaan syntax (Rosseel, 2012) in R. As can be
seen from (2), (3) and (4), the non-�xed elements in {Λy,Λx,B,Γ,Ψεy ,Ψεx ,Ψδ,Φξ}
of a speci�c SEM model can be collected in a parameter vector λ. The den-
sity of the data is given by f(X|λ), whereX denotes the data (Bollen, 1989).
The distribution of dataX is most often multivariate normal, though it could
also involves multinomial, et al. Furthermore, the non-�xed parameters can
be divided into λ = {θ, ζ}, where θ denotes the target parameters that will
appear in the order constrained hypotheses elaborated in the next section,
and ζ denotes the nuisance parameters that will not.

2.2 Order constrained hypotheses

Order constrained hypotheses express the expectations of researchers among
the (standardized) target parameters in SEM. For example, hypothesis H1 :
θ1 > θ2 where θ1 and θ2 are the coe�cients of the predictors ξ1 and ξ2,
respectively, implies that the predictor ξ1 is stronger than ξ2. The general
form of an order constrained hypothesis Hi is given by

Hi : Riθ > ri, (5)

where Ri is the restriction matrix containing order constraints, and θ and ri
denote the target parameter vector and constant vector in Hi, respectively.
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We assume that the number of constraints is K and the number of target
parameters is J . Therefore, Ri is a K × J matrix, and the lengths of θ and
ri are J and K, respectively. For instance, H2 : θ1 > θ2 > θ3 is an example
with J = 3 and K = 2, which leads to θ = (θ1, θ2, θ3)T and an augmented
matrix:

[R2|r2] =

[
1 −1 0
0 1 −1

0
0

]
.

The augmented matrix [Ri|ri] should be implemented as input of Bain.
The hypothesis Hi is often compared to an unconstrained hypothesis

Hu : θ ∈ RJ , (6)

where RJ denotes the J-dimensional real vector space, or to its complement

Hic : not Hi. (7)

Furthermore, we can evaluate Hi against a competing hypothesis

Hi′ : Ri′θ > ri′ . (8)

The evaluation of these hypotheses can be conducted using Bayes factors,
which will be elaborated in the next section.

When specifying order constrained hypotheses in SEM models, the target
parameters may need to be standardized. For example, if hypothesis H1 :
θ1 > θ2 compares two regression coe�cients to determine which predictor
is stronger, then the coe�cients θ1 and θ2 should be standardized to be
comparable. The standardization of target parameters can be achieved by
standardizing the observed and latent variables in SEM models. However,
this manner might be criticized because the data is used twice, once for
standardization and once for evaluation of the hypothesis (Gu et al., 2014).
The lavaan package (Rosseel, 2012) provides an alternative approach that
can directly obtain estimates and covariance matrix of standardized target
parameters. This paper uses the alternative standardization approach in
lavaan. To keep the notation simple, in this paper θ will be used to denote
both unstandardized and standardized target parameters.

3 Bayes factor

The Bayes factor of Hi against Hu is de�ned as the ratio of two marginal
likelihoods (Je�reys, 1961; Kass and Raftery, 1995; Hoijtink, 2012):

BFiu =
mi(X)

mu(X)
=

∫∫
f(X|θ, ζ)πi(θ, ζ)dθdζ∫∫
f(X|θ, ζ)πu(θ, ζ)dθdζ

, (9)
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where πi(θ, ζ) and πu(θ, ζ) denote the prior distribution under Hi and Hu

(will be speci�ed in the next section), respectively, and f(X|θ, ζ) denotes the
density of X given θ and ζ (see Bollen, 1989). Furthermore, from equation
(9) it follows that the Bayes factor of Hi against Hic can be obtained as
BFiic = BFiu/BFicu, and the Bayes factor of Hi against Hi′ is BFii′ =
BFiu/BFi′u.

The Bayes factor BFiu quanti�es the relative evidence in the data in
favor of hypothesis Hi against Hu. For example BFiu = 2 indicates that the
support in the data for Hi is twice as large as the support for Hu. A general
guideline for the interpretation of the Bayes factor is that BFiu ∈ (1, 3]
indicates evidence for Hi that is not worth mentioning, and BFiu ∈ (3, 20],
BFiu ∈ (20, 150] and BFiu > 150 indicate positive, strong and very strong
evidence forHi, respectively (Kass and Raftery, 1995). Note that if BFiu < 1
which implies evidence against Hi, the strength of this evidence is quanti�ed
using the rule above for the reciprocal of BFiu. Furthermore, Bayes factors
BFiic and BFii′ can also be interpreted using the same rule. Although this
rule renders a proposal to interpret the Bayes factor, it is not suggested using
it strictly because this interpretation is a rough descriptive statement with
respect to the standards of evidence, which could very well be modi�ed based
on the research context. For this reason users can judge by themselves when
the evidence in the data is positive, strong or decisive in favor or against a
hypothesis based on the observed Bayes factor.

Formula (9) can be simpli�ed to (Klugkist and Hoijtink, 2007):

BFiu =
fi
ci
, (10)

where

ci =

∫∫
θ∈Θi

πu(θ, ζ)dθdζ =

∫
θ∈Θi

πu(θ)dθ, (11)

called relative complexity (Mulder 2014b), is the proportion of the prior
distribution (speci�ed in the next section) in agreement with Hi relative to
Hu, and

fi =

∫∫
θ∈Θi

πu(θ, ζ|X)dθdζ =

∫
θ∈Θi

πu(θ|X)dθ, (12)

called relative �t, is the proportion of the posterior distribution (speci�ed in
the next section) in agreement with Hi relative to Hu. Here Θi = {θ|Riθ >
ri} denotes the parameter space constrained by Hi, and ζ is not constrained.
The complexity implies how speci�c a hypothesis is, and the �t implies how
much the data supports a hypothesis relative to Hu. The more speci�c the
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hypothesis, the less the complexity, while the more the support from the
data, the larger the �t. The derivation of equation (10) can be found in
Mulder (2014b). Equation (10) shows that the Bayes factor of an order
constrained hypothesis Hi against an unconstrained hypothesis Hu can be
represented as the ratio of the �t and complexity of Hi. This representa-
tion facilitates our development of the software for the evaluation of order
constrained hypotheses.

Based on BFiu, the Bayes factor BFiic for Hi against Hic , and BFii′ for
two competing hypotheses Hi and Hi′ can also be derived. Noting that the
proportions of prior and posterior distributions in agreement with Hic are
1− ci and 1− fi, respectively, it follows that

BFiic =
fi
ci
/

1− fi
1− ci

. (13)

Analogously, BFii′ can be obtained by

BFii′ = BFiu/BFi′u =
fi
ci
/
fi′

ci′
. (14)

Furthermore, an accessible manner for comparing a set of hypotheses is to
transform Bayes factors into posterior model probabilities (PMPs). The
PMPs are a representation of the support in the data for each hypothesis
on a scale between 0 and 1. Assuming equal prior probabilities for the
hypotheses, we obtain PMPs for all the competing hypotheses excluding Hu

using (Hoijtink, 2012, pp.52)

PMPi =
BFiu∑
iBFiu

for i = 1, . . . , IN , (15)

where IN denotes the number of competing hypotheses. The execution of
our program renders both Bayes factors (10) and PMPs (15). As was shown
in (10), the Bayes factor for Hi against Hu depends on the complexity and
�t for which the prior and posterior distributions of θ under Hu need to be
speci�ed, respectively. The speci�cation of prior and posterior distributions
will be introduced in the next section.

4 Prior and posterior distributions

4.1 Prior speci�cation

The speci�cation of prior distributions is an important step in Bayesian hy-
pothesis testing. As can be seen from equation (11), only a proper prior of θ
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for the unconstrained hypothesis needs to be speci�ed; the priors under the
order constrained hypotheses automatically follow from this prior by trun-
cating the unconstrained prior in the respective order constrained subspaces.
The unconstrained prior that is proposed in this paper is partly based on
the fractional Bayes factor of O'Hagan (1995) which is known to be invariant
for linear transformations. In the fractional Bayes factor a prior is implicitly
constructed using a small fraction of the information in the data. A key
property of the resulting automatic prior is that it has the same covariance
structure as the covariance structure in the data (Mulder, 2014b).

In SEM the covariance structure in the data of the parameters of interest
is contained in the estimated covariance matrix of the (standardized) target
parameters, denoted by Σ̂θ. This covariance matrix can be obtained by
standard SEM software packages such as lavaan (Rosseel, 2012). Following
the idea of a data-based covariance structure, as in the fractional Bayes
factor, the following unconstrained normal prior will be used for the target
parameters

π∗u(θ) = N(0, ωΣ̂θ), (16)

where ω controls the amount of prior information (a small/large value for
ω implies an informative/vague prior). To avoid the dependence of the (ar-
bitrarily chosen) mean vector 0, we let ω go to ∞. Although extremely
vague priors are not recommended when testing hypotheses with equality
constraints due to Lindley-Bartlett's paradox (Lindley, 1957; Bartlett, 1957),
such priors can be used for testing order constrained hypotheses (Klugkist
et al., 2005). It should be noted that normal priors can be applied to pa-
rameters that have symmetric distributions like regression coe�cients, group
means, correlations, and factor loadings. However, it may not be suitable
for the parameters that have non-symmetric distributions like variances and
probabilities.

To illustrate that the prior probability that the constraints hold is invari-
ant for linear transformations, let us consider the following order constrained
hypothesis H2 : θ1 > θ2 > θ3 with restriction matrix

R2 =

[
1 −1 0
0 1 −1

]
for the repeated measures data yi = (yi1, yi2, yi3)T ∼ N(θ,Σy), where θ =
(θ1, θ2, θ3)T is a mean vector and Σy is a covariance matrix. Now let us
consider a data set where the three measurements are independent, e.g.,
Σ̂θ = I3, resulting in an unconstrained prior of the form N(0, ωI3). In
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this case the prior probability, which re�ects the relative complexity of H2

relative to Hu, is equal to Pr(θ1 > θ2 > θ3|Hu) = 1
6 , for any choice of ω > 0.

Now we consider a one-to-one transformation of the data according to
zi = (yi1 − yi2, yi2 − yi3, yi3)T = Lyi, with

L =

 1 −1 0
0 1 −1
0 0 1

 .
We shall write zi ∼ N(γ,Σz), where γ = Lθ = (θ1 − θ2, θ2 − θ3, θ3)T

and Σz = LΣyL
T . Thus, the equivalent constrained hypothesis in the new

parameterization corresponds to H2 : γ1 > 0, γ2 > 0. Consequently, the
estimated covariance matrix is now

Σ̂γ = LΣ̂θL
T = LLT =

 2 −1 0
−1 2 −1
0 −1 1

 .
This results in an unconstrained prior for the target parameters of (γ1, γ2)T ∼

N(0, ω

[
2 −1
−1 2

]
). The prior probability now remains unchanged because

Pr(γ1 > 0, γ2 > 0|Hu) = 1
6 , for any choice of ω > 0.

Theorem 1 provides a general proof of this invariance of the prior prob-
ability that the constraints of Hi hold with respect to the mean parameters
in multivariate data.

Theorem 1: The complexity of Hi : Riθ > ri when using π
∗
u(θ) is invariant

for linear one-to-one transformation of the multivariate data y ∼ N(θ,Σy).

Proof : For the multivariate data, the covariance matrix of θ is approxi-
mated by Σ̂θ = SY /n, where SY = (Y −1ȳT )T (Y −1ȳT ) with ȳ being the
sample means of Y = (y1, · · · ,yn). Following (16) the prior distribution for
θ is π∗u(θ) = N(0, ωnSY ).

Consider a linear one-to-one transformation Ly = z ∼ N(γ,Σz), where
L is a J × J full rank matrix, and γ = Lθ and Σz = LΣyL

T . After
linear transformation, similarly, the covariance matrix of γ is approximated
by Σ̂γ = SZ/n, where SZ = (Z − 1z̄T )T (Z − 1z̄T ) with z̄ being the
sample means of Z = (z1, · · · , zn). Note that SZ = L(Y − 1ȳT )T (Y −
1ȳT )LT = LSYL

T which implies Σ̂γ = LΣ̂θL
T , then the prior distribution

for γ becomes π∗u(γ) = N(0, ωnLSYL
T )
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Let β1 = Riθ − ri and β∗ = RiL
−1γ − ri with

π∗u(β1) = N(0,
ω

n
RiSYR

T
i ), (17)

and
π∗u(β∗) = N(0,

ω

n
RiL

−1SZ(RiL
−1)T ) = N(0,

ω

n
RiSYR

T
i ) (18)

then we have

P (Riθ > ri|π∗u(θ)) = P (β1 > 0|π∗u(β1)) = P (β∗ > 0|π∗u(β∗))

= P (RiL
−1γ > ri|π∗u(γ)) (19)

which manifests that the complexity is invariant. �

Therefore the prior distribution in (16) is used for Bayes factor compu-
tation between order constrained hypotheses in SEM. Next, the posterior
distribution is speci�ed to obtain the relative �t (12).

4.2 Normal approximations to posterior distributions

In order to compute Bayes factors for order constrained hypotheses in SEM
models, the asymptotic normality of the posterior distribution is used based
on Laplace's method (DiCiccio, Kass, Raftery, and Wasserman, 1997; Gel-
man, Carlin, Stern, and Rubin, 2004, pp.101-107). As elaborated in the
beginning of this section, the posterior distribution only depends on the
density of the data f(X|θ, ζ) when using the vague prior in (16) while let-
ting ω → ∞. Subsequently the posterior distribution can be approximated
by:

πu(θ|X) ≈ N(θ̂, Σ̂θ), (20)

where θ̂ denotes the estimates of the target parameters, and Σ̂θ is their co-
variance matrix. Both of them can be obtained in lavaan using estimation
methods, such as least square estimation and maximum likelihood estima-
tion (Rosseel, 2012). Furthermore, to obtain standardized θ̂ and Σ̂θ lavaan

provides approaches to standardize the observed variables and to directly
standardize the target parameters. The performance of these two approaches
of standardization was discussed in Gu et al. (2014), which showed that the
variances of standardized parameters obtained using two approaches are dif-
ferent, whereas the resulting Bayes factors are similar. Now that the prior
and posterior distributions have been speci�ed, the Bayes factor can be ob-
tained using (10). In the following section an e�cient algorithm is described
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for the computation of the prior and posterior probability that the order
constraints hold under Hu, which are key ingredients of the computation of
the Bayes factor.

Normal approximation is widely used in hypothesis testing and model
selection. Examples are Akaike's information criterion (AIC; Akaike, 1973),
Bayesian information criterion (BIC; Schwarz, 1978), andWald's test (Gourier-
oux, Holly, and Monfort, 1982). The Bayes factor based on normally ap-
proximated posterior (20) is similar as the BIC. The BIC is a large sample
approximation of the marginal likelihood, whereas the proposed Bayes fac-
tor is a large sample approximation of a speci�c expression of the Bayes
factor for an order constrained hypothesis against an unconstrained hypoth-
esis. Both methods rely on a minimally informative prior and maximum
likelihood estimates, but the proposed Bayes factor also needs the estimated
Fisher information covariance matrix. An important di�erence is that the
proposed Bayes factor can be used for the evaluation of order constrained
hypotheses on the parameters of interest, while the BIC is not suitable for
evaluating hypotheses with order constraints.

5 An e�cient algorithm for Bayes factor computa-

tion

As was elaborated in Section 3, the Bayes factor is a ratio of the posterior
probability that the order constraints of Hi hold under Hu, denoted by the
relative �t fi, and the prior probability that the order constraints of Hi hold
under Hu, denoted by the relative complexity ci. Because both the prior
distribution π∗u(θ) = N(0, ωΣ̂θ) and the posterior distribution πu(θ|X) ≈
N(θ̂, Σ̂θ) are normal distributions, for notational convenience each of them
can be denoted by

p(θ) = N(µθ,Σθ). (21)

Thus, the complexity and �t can be represented by the following probability

P (Hi) = P (Riθ > ri) =

∫
Riθ>ri

p(θ)dθ. (22)

This probability can be estimated by sampling from the prior or posterior
distribution using the Gibbs sampler (Gelman, et al., 2004).

Before presenting the core algorithm of the Gibbs sampler, we shall
present two pre-steps of the sampling procedure which can e�ciently re-
duce the computing time. First, the Bayes factor is decomposed in Section
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5.1 such that less iterations of the Gibbs sampler are needed to accurately
estimate the complexity and �t. Second, the target parameters are trans-
formed in Section 5.2 such that in each iteration of the Gibbs sampler less
time is needed. Thereafter, Section 5.3 introduces the constrained Gibbs
sampling procedure based on the transformed parameters. After obtaining
the samples of transformed parameters, decomposed complexities and �ts
can be estimated using two methods proposed in Section 5.4. Furthermore,
the sample size of the Gibbs sampler for accurate estimation of the complex-
ity and �t is discussed in Section 5.5. Section 5.6 summarizes the constrained
Gibbs sampling procedure by which we estimate the complexity and �t, and
thus the Bayes factor.

5.1 Decomposition of the Bayes factor

When hypothesis Hi is formulated using a relatively large number of order
constraints, accurately estimating the complexity and �t can be computa-
tionally intensive. For example, Gu et al (2014) showed that the complexity
of H1 : θ1 >, . . . , > θ10 under prior

π∗u(θ) = N(0, ωI)

is c1 = 1/J ! = 1/10!, that is, a very small value with the need of more
than 20 million Gibbs sampler draws (Hoijtink, 2012, p.207) to ensure the
deviation of the estimate is almost never over 10%. Directly estimating
this complexity may not be feasible or extremely time-consuming. This
conclusion also applies to the estimation of the complexity under π∗u(θ) and
the �t, because the accuracy of the estimation only depends on the size of
complexity or �t and the number of Gibbs sampler draws. Consequently,
when computing the Bayes factor for hypotheses with relatively large K, a
decomposition of the Bayes factor is needed (Klugkist, Laudy, and Hoijtink,
2010):

BFiu = BFi1,u ×BFi2,i1 × · · · ×BFiK ,iK−1 , (23)

where ik, k = 1, . . . ,K denotes a hypothesis using the constraints in the �rst
k rows of Ri. More speci�cally, BFik,ik−1

is de�ned by:

BFik,ik−1
=
fik,ik−1

cik,ik−1

. (24)

Let Hik denote the hypothesis using constraints in the �rst k rows of Ri,
then cik,ik−1

and fik,ik−1
denote the probabilities of prior and posterior dis-

tributions in agreement with Hik conditional on Hik−1
, respectively. Then,

14



the complexity and �t can be expressed by

ci =

K∏
k=1

cik,ik−1
and fi =

K∏
k=1

fik,ik−1
. (25)

Let

P (Hik |Hik−1
) = P (Rikθ > rik |Ri1θ > ri1 , . . . ,Rik−1

θ > rik−1
) (26)

denote either cik,ik−1
or fik,ik−1

, then the probability (22) for ci and fi be-
comes

P (Hi) = P (Hi1)× P (Hi2 |Hi1)× · · · × P (HiK |HiK−1). (27)

Because each of the probabilities in (27) is larger than P (Hi) especially
when K is large, accurately estimating cik,ik−1

or fik,ik−1
requires much less

draws from the Gibbs sampler compared to directly estimating ci or fi.
Although every probability in (27) needs to be estimated, the total sample
size for decomposed ci or fi is still less than that without decomposition
because the sample size for accurate estimation increases dramatically as K
increases. This will be illustrated in Section 5.5. Before introducing the
method for the computation of the probability (26), we transform the target
parameters such that the order constrained hypothesis has a simple form,
which will be elaborated in the next section.

5.2 Transformation of target parameters

This section simpli�es the form of the hypothesis Hi using parameter trans-
formation β = Riθ − ri such that Hi : Riθ > ri becomes Hi : β > 0 and
the decomposed complexity or �t shown in (26) becomes

P (Hik |Hik−1
) = P (βk|β1 > 0, . . . , βk−1 > 0). (28)

This transformation was also used in Mulder (2016). It has three bene�ts
in terms of the e�ciency of estimating the decomposed complexity and �t.
First, the subset of vector β that needs to be sampled has a length that is
less than or equal to J (the length of θ). Take hypothesis H1 : θ1 > θ2 > θ3

for example. The transformation (β1, β2)T = (θ1 − θ2, θ2 − θ3)T leads to
H1 : β1 > 0, β2 > 0. Therefore, we only need to sample β with a length of
2. Although for another example H2 : θ1 > 0, θ2 > 0, θ1 > θ2 the length
of β, where (β1, β2, β3)T = (θ1, θ2, θ1 − θ2)T , is larger than the length of θ,
only a subset (β1, β2)T needs to be sampled because β3 = β1 − β2. This
issue will be further explained in the following paragraph. Second, it is more
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straightforward to de�ne the conditional probability in (28) than in (26),
because each β has a lower bound of 0 if it is constrained, whereas if θ is
constrained, a lower and upper bound has to be determined which will take
much e�ort especially when K is relatively large. It will be shown in Section
5.3 how the constrained β can be sampled. Third, the conditional probability
P (βk|β1 > 0, . . . , βk−1 > 0) can analytically be determined, which will be
further discussed in Section 5.4.

Since θ has a multivariate normal distribution (21), after the linear trans-
formation, β also has a multivariate normal distribution p(β) = N(µβ,Σβ),

where µβ = Riµθ − ri and Σβ = RiΣθR
T
i . It should be noted that if Ri

is of full row rank, then the elements of β is linearly independent, otherwise
the elements of β are not independent. Take, for example, hypothesis

H3 :

θ1 > θ3

θ1 > θ4

θ2 > θ3

θ2 > θ4

with [R3|r3] =


1 0 −1 0
1 0 0 −1
0 1 −1 0
0 1 0 −1

0
0
0
0

 . (29)

The matrix R3 has a rank of 3 and the transformation

β =


β1

β2

β3

β4

 = R3θ − r3 =


θ1 − θ3

θ1 − θ4

θ2 − θ3

θ2 − θ4

 (30)

implies that β4=−β1 + β2 + β3. Without loss of generality, we suppose the
rank of Ri is M and let

β = (β̄, β̃) = (β̄1, . . . , β̄M , β̃M+1, . . . , β̃K), (31)

where β̄ containsM independent elements of β, and β̃ is a linear combination
of the elements of β̄. This implies that we only need to sample β̄ from its
distribution. The distribution of β̄ is p(β̄) = N(µβ̄,Σβ̄) with µβ̄ = R̄iµθ−r̄i
and Σβ̄ = R̄iΣθR̄

T
i , where R̄i is a full row rank matrix that consists of

M rows of Ri and r̄i is the corresponding constant vector. Although R̄i

may not be unique, any set of linearly independent M rows of Ri can be
chosen because the order of constraints does not a�ect the evaluation of the
hypothesis.

The speci�cation of R̄i, r̄i, and the linear combination of β̄ that renders
β̃ can be achieved using elementary row operations (Gaussian elimination)
for the matrix Ri. The procedure is implemented in R package Bain. Details
are given as follows:
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1. Set an identity matrix C with a rank of max {K,J}. InitializeA = Ri,
M = K and d = (1, 2, . . . ,K) to record the swap of constraints in Ri.

2. Repeat step (i), (ii) and (iii) for k = 1, · · · ,K.

(i) If Ak,k = 0 and Ak′,k 6= 0 where k′ > k, then swap the kth row
with the k′th row in A and C, and swap dk and dk′ in d.

(ii) If Ak,k 6= 0 after step (i), then let Ak,j = Ak,j/Ak,k and Ck,j =
Ck,j/Ck,k for j = 1, · · · , J .

(iii) Let Ak′,j = Ak′,j −Ak,jAk′,k and Ck′,j = Ck′,j −Ck,jCk′,k for
all k′ 6= k and j = 1, · · · , J .

3. For k = 1, · · · ,K, if
∑J

j=1 |Ak,j | = 0 then M = M − 1.

4. For k = 1, · · · ,K, if
∑J

j=1 |Ak,j | = 0 and
∑J

j=1 |Ak′,j | 6= 0 where
k′ > k, then swap the kth row with the k′th row in A and C, and
swap dk and dk′ in d.

5. Let Ri = (Ri,d1 , . . . ,Ri,dK )T and ri = (rd1 , . . . , rdK ), where Ri,dk

denotes the dkth row of Ri. Then let β = Riθ > ri in which β̄
corresponds to the �rst M elements in β and β̃ corresponds to the
remaining part.

After conducting this procedure, we obtain the rank of Ri, i.e., M , and
[R̄i|r̄i] which contains the �rst M rows of [Ri|ri]. Furthermore, the depen-
dence in β can be expressed by

CM+1,d1 · β1+ · · · +CM+1,dK · βK = rdM+1
,

...

CK,d1 · β1+ · · · +CK,dK · βK = rdK . (32)

For example, for the hypothesis H3 shown in (29), executing the procedure
above renders

[A|C] =


1 0 −1 0
1 0 0 −1
0 1 −1 0
0 1 0 −1

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



→


1 0 0 −1
0 1 0 −1
0 0 1 −1
0 0 0 0

0 1 0 0
−1 1 1 0
−1 1 0 0
1 −1 −1 1

 (33)
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and d = (1, 3, 2, 4) which means the second and third rows have been
swapped. Since there are three non-zero rows in A after Gaussian elim-
ination, the rank of Ri is M = 3 and the �rst three rows of Ri are in-
dependent because they correspond to the non-zero rows. Furthermore,
according to (32) the last row of C after Gaussian elimination indicates
β1 − β2 − β3 + β4 = 0, i.e., β4 = −β1 + β2 + β3.

After the transformation of target parameters, the probability P (βk|β1 >
0, . . . , βk−1 > 0) from equation (28) can be estimated using the constrained
Gibbs sampler. This will be discussed in the next section.

5.3 Constrained Gibbs sampler

The constrained Gibbs sampler is applied to estimate each decomposed com-
plexity and �t. The basic principle of the Gibbs sampler is to sequentially
generate a sample for each β conditionally on the current values of all the
others. As was elaborated before, only β̄ needs to be sampled, and the
sample of β̃ can be computed using the sample of β̄. Since β̄ is normally
distributed, the conditional distribution of any parameter of β̄ given the re-
maining parameters is also normal. In each iteration, β̄tk, where t denotes
the iteration index of the Gibbs sampler and k = 1, . . . ,M , can be sampled
from the following conditional distribution

p(β̄tk|β̄tl 6=k) = N(µβ̄k +
k−1∑
l=1

bkl(β̄
t
l − µβ̄l) +

M∑
l=k+1

bkl(β̄
t−1
l − µβ̄l), [(Σ

−1
β̄

)kk]
−1),

(34)
where µβ̄k is the mean of β̄k in this full conditional distribution, bkl is
the element at the kth row and lth column in the matrix BM×M = I −
[diag(Σ−1

β̄
)]−1Σ−1

β̄
with Σβ̄ being the covariance matrix of β̄ and I being a

M ×M identity matrix, and (Σ−1
β̄

)kk is the element at the kth row and kth

column in Σ−1
β̄
. The derivation of equation (34) can be found in Gelman, et

al. (2004, pp.579).
The estimation of probability P (βk|β1 > 0, . . . , βk−1 > 0) requires a

sample of β̄ = (β̄1, . . . , β̄M ) from the prior or posterior distribution that is
in agreement with the �rst k−1 constraints β1 > 0, . . . , βk−1 > 0. Using the
current value of β and the linear restriction if Ri is not of full row rank, a
lower bound L and a upper bound U of β̄ can be speci�ed. More speci�cally,
if k ≤M +1 then (β̄1, · · · , β̄k) are sampled with a lower bound of L = 0 and
no upper bound, and other βs are not constrained. If k > M + 1, all β̄ have
a lower bound of L = 0, and (β̃M+1 > 0, . . . , β̃k−1 > 0) will be used to de�ne
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a further lower bound and a upper bound of β̄ based on their dependence.
Using inverse probability sampling (Gelfand, Smith, and Lee, 1992), it is
straightforward to obtain a sample from truncated normal distribution (34)
constrained in (L,U) according to the following two steps.

(i) Randomly generate a number ν via a uniform distribution on the in-
terval [0,1].

(ii) Compute β̄k = Φ−1
β̄k

[Φβ̄k
(L) + ν(Φβ̄k

(U) − Φβ̄k
(L))], where Φβ̄k

is the

cumulative distribution function of (34) and Φ−1
β̄k

is the inverse cumu-

lative distribution function.

Running the Gibbs sampler for t = 1, . . . , T iterations renders a sample of
each component of β̄ = (β̄1, . . . , β̄M ). As elaborated in Section 5.2, β̃ is
linearly dependent on β̄. Thus, we can also obtain a sample of β̃ using the
sample of β̄ and equation (32).

The choice of burn-in period and the check of convergence are important
steps in the Gibbs sampler. In our method, however, we specify the prior
distribution and approximate the posterior distribution with a multivari-
ate normal distribution. Therefore, convergence is not an issue because the
sample from multivariate normal distribution converges very fast even if the
initial value is far away from the prior or posterior mode. This is explicitly
illustrated in Gu et al. (2014), which applies the constrained Gibbs sampler
to multivariate normal distributions as well. In addition, Gu et al. (2014)
also shows that within a burn-in period of 100 iterations the e�ect of the
initial values is eliminated and the sample converges to the desired distribu-
tion. Thus, we discard the �rst 100 iterations as a burn-in phase of the Gibbs
sampler. In the next section, two methods for estimating the decomposed
complexity and �t are presented based on the samples of β obtained in this
section.

5.4 Two methods for estimating complexity and �t

In this section, we propose two approaches to estimate the probability (28)
after obtaining the samples of β of size T from either prior or posterior
distribution. A straightforward manner is counting the number of samples
in agreement with βk > 0:

P (βk > 0|β1 > 0, . . . , βk−1 > 0) = T−1
T∑
t=1

I(βtk > 0|βt1 > 0, . . . , βtk−1 > 0),

(35)
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where I(·) denotes the indicator function which is 1 if the argument is true
and 0 otherwise.

Particularly for estimating this probability with respect to the �rst M
decomposed constraints β̄ > 0, we adopt a more e�cient approach inspired
by Gelfand and Smith (1992) and used in Morey, Rouder, Pratte, and Speck-
man (2011), and Mulder (2016). The principle of this method is that the
density of the univariate βk can be approximated by the average of its full
conditional density constructed using the current sample of all the other
βs. This implies the probability P (βk > 0) given the density of βk can be
approximated by the average of P (βk > 0) given the conditional density
based on di�erent samples. Consequently, using the constrained samples for
β1, . . . , βk−1 in the conditional density, we obtain

P (βk > 0|β1 > 0, . . . , βk−1 > 0)

= T−1
T∑
t=1

P (βk > 0|βt1 > 0, . . . , βtk−1 > 0, βtk+1, . . . , β
t
K). (36)

This probability can easily be computed because the conditional distribution
(34) of βk is a univariate normal distribution that is easily integrated for
βk > 0.

It should be emphasised that this method is not applicable for estimating
decomposed complexities or �ts for which k > M , because β̃k for k > M is a
linear combination of β̄1, . . . , β̄M , which means β̃k is a point given β̄1, . . . , β̄M .
Therefore in this case equation (35) will be used. Despite of this limitation,
the new method (36) is still attractive because it increases the accuracy of
the estimation for a give sample size of the Gibbs sampler. This will be
elaborated in the next paragraph. This implies that fewer iterations of the
Gibbs sampler are needed to obtain an acceptable accuracy. Consequently,
for estimating the decomposed complexities and �ts in our program, the new
method (36) is used when k ≤ M , whereas the approach shown in (35) is
used when k > M .

To investigate the performance of the two methods, we shall consider
a series of hypotheses H1 : θ1 > . . . > θJ for J = 3, . . . , 5 and estimate
the complexities under π∗u(θ) = N(0, ωΣ̂θ), where 0 is a zero vector with a
length of J , Σ̂θ = I is a J×J identity matrix, and ω →∞. The true value of
c1 with respect to prior π∗u(θ) in these hypotheses is known as cTrue1 = 1/J !.
We estimate the complexities of H1 1000 times using each method when the

sample size of the Gibbs sampler is T = 50, 500, and 5000. This results in c
(s)
11

and c
(s)
12 based on methods (35) and (36), respectively, where s = 1, . . . , 1000.

Thereafter, we compute the mean squared relative error (MSRE),MSRE1 =
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Table 1: MSRE of estimate using two methods
True ci=0.166 (J=3) ci=4.17E-2 (J=4) ci=8.33E-3 (J=5)

MSRE1 MSRE2 MSRE1 MSRE2 MSRE1 MSRE2

T = 50 7.76E-2 8.37E-3 0.140 3.36E-2 0.272 9.64E-2
T = 500 9.25E-3 7.62E-4 1.61E-2 3.34E-3 2.44E-2 8.96E-3
T = 5000 5.28E-4 7.78E-5 1.49E-3 3.38E-4 2.46E-3 9.15E-4

1
1000

∑1000
s=1 (

cTrue
1 −c(s)11

cTrue
1

)2 and MSRE2 = 1
1000

∑1000
s=1 (

cTrue
1 −c(s)12

cTrue
1

)2, to measure

the accuracy of the estimation using methods (35) and (36), respectively.
Table 1 displays the MSREs of the estimate for c1. As can be seen in Ta-

ble 1, the MSREs from method (36) MSRE2 are much smaller than that from
method (35) MSRE1. This implies that method (36) needs a smaller sample
size of the Gibbs sampler to attain the same accuracy. Furthermore, it can
be seen that the MSREs decreases as sample size increases, and small com-
plexity ci =8.33E-3 needs more sample size than large complexity ci = 0.166
to obtain the same magnitude of MSREs. This implies we can determine
sample size T for both methods (35) and (36) based on the acceptable esti-
mation accuracy and the size of the probability under estimation. This will
be discussed in the next section.

5.5 Sample size determination for the Gibbs sampler

This section discusses the sample size T of the Gibbs sampler needed to
accurately estimate P (βk > 0|β1 > 0, . . . , βk−1 > 0), which has a true value
P True. As stated earlier, this probability is estimated using method (35)
if k > M , and method (36) if k ≤ M . For method (35), Hoijtink (2012,
p.154) proposes a rule to determine the sample size T1 needed to accurately
estimate the complexity or �t, which is shown in the top panel of Table 2.
The criterion is that the 95% central credibility interval for the estimate has
lower and upper bounds that are less than 10% di�erent from the true value.
The �rst row in Table 2 displays the true probabilities P True that needs to be
estimated. In addition, L-95% and U-95% demonstrate the lower and upper
bounds of the 95% central credibility interval when using the corresponding
T1 above.

For method (36), we present a new rule to determine the sample size T2

based on a more strict accuracy criterion, that is, the di�erences between
both L-95% and U-95%, and P True are less than 5%. We let N(µβk , σ

2
βk

)
denote the distribution of βk in P (βk|β1 > 0, . . . , βk−1 > 0), where µβk is
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Table 2: Gibbs sample size determination
P True 0.166 4.17E-2 8.33E-3 1.39E-3 1.98E-4 2.48E-5

T1 3,000 9,600 120,000 360,000 2,520,000 20,160,000
L-95% 0.154 3.8E-2 7.8E-3 1.27E-3 1.82E-4 2.3E-5
U-95% 0.180 4.6E-2 8.9E-3 1.52E-3 2.17E-4 2.7E-5

T2 4,000 8,000 12,000 18,000 25,000 32,000
L-95% 0.159 3.97E-2 7.93E-3 1.32E-3 1.89E-4 2.37E-5
U-95% 0.175 4.36E-2 8.74E-3 1.46E-3 2.08E-4 2.60E-5

the mean and σ2
βk

is the variance. Then equation (36) becomes

P (βk|β1 > 0, . . . , βk−1 > 0) = P (βk > 0|βk ∼ N(µβk , σ
2
βk

))

= P (βk > 0|βk ∼ N(λ̂k, 1)), (37)

where λ̂k = µβk/σβk is the standardized population mean of βk. The princi-
ple of the sample size determination for method (36) is based on two facts.
First, in the Gibbs sampler, we obtain T2 samples of βk from N(µβk , σ

2
βk

)

or standardized βk from N(λ̂k, 1). This implies that the distribution of the
standardized sample mean of βk, denoted by λk, is N(λ̂k,

1
T2

). Second, the
probability P (βk|β1 > 0, . . . , βk−1 > 0) is a one-to-one correspondence func-
tion of λ̂k. For example, if λ̂k = 0, we obtain a probability of 1/2, and
conversely if the true value of the probability is 1/6, we would expect a λ̂k of
−0.97. These enable us to determine the sample size T2 needed to accurately
estimate P (βk > 0|β1 > 0, . . . , βk−1 > 0) given a true value P True using the
following steps.

1. Compute λ̂k such that P (βk > 0|βk ∼ N(λ̂k, 1)) = P True, and initialize
T2 = 1000.

2. Sample λk 10000 times from N(λ̂k,
1
T2

), and then obtain 10000 esti-

mates of P (βk > 0|βk ∼ N(λ̂k, 1)).

3. Using 10000 estimates of P (βk > 0|βk ∼ N(λ̂k, 1)), compute their 95%
central credibility interval (L,U).

4. If either |L−P
True|

PTrue > 5% or |U−P
True|

PTrue > 5%, then T2 = T2 + 1000 and
go to Step 2.

The bottom panel of Table 2 displays the sample size T2 and the resulting
L-95% and U-95% from the procedure above given corresponding P True.
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In Bain, Table 2 is adopted to determine the sample size T1 and T2 of
the Gibbs sampler for estimating each decomposed complexity and �t based
on methods (35) and (36). Because T1 or T2 is large enough to accurately
estimate the corresponding P True in the �rst row of Table 2, it will also
be su�cient to estimate a probability that is larger than this P True. We
estimate P (βk|β1 > 0, . . . , βk−1 > 0) with a starting sample size T1 = 3000
if k > M or T2 = 4000 if k ≤M , and gradually reset T1 or T2 based on Table
2 until the estimate of the complexity or �t is larger than the corresponding
P True. Note that if the estimate is still less than 2.48E-5 when using the
corresponding T1 or T2, we specify T1 = 100, 000, 000 or T2 = 100, 000.

5.6 Summary of the computation of the Bayes factor

This section summarizes the computation of the Bayes factor for Hi against
Hu, which is a ratio of the �t and complexity. The following steps describe
how our program computes the complexity and �t, and therefore the Bayes
factor.

1. Transform θ into β using the procedure shown in Section 5.2. Then,
we obtain (β̄, β̃) and M the rank of Ri.

2. Repeat Step (1), . . . , (6) for k = 1, . . . ,K to estimate each P (βk >
0|β1 > 0, . . . , βk−1 > 0) for the decomposed complexity cik,ik−1

and �t
fik,ik−1

.

(1) Initialize the sample size of the Gibbs sampler as T2 = 4000 if
k ≤M and T1 = 3000 if k > M , and initialize β = 0.

(2) Repeat Step (a) or (b) for t = 1, . . . , T2+100 iterations if k ≤M or
for t = 1, . . . , T1 + 100 iterations if k > M , where 100 denotes the
�rst 100 iterations, that is, a burn-in phase of the Gibbs sampler.

(a) If k ≤ M + 1, then de�ne a boundary (L,U) = (0,∞) for
β̄1, . . . , β̄k−1 and no boundary for β̄k, . . . , β̄K . Thereafter, se-

quentially generate a sample of β̄
t
from the truncated distri-

bution of (34) as previously described in Step (i) and (ii) in
Section 5.3.

(b) If k > M + 1, then de�ne a boundary (L,U) for β̄1, . . . , β̄M
using the linear relation between the β̄ > 0 and β̃ > 0. There-
after, sequentially generate a sample of β̄

t
from the truncated

distribution of (34) as previously described in Step (i) and (ii)

in Section 5.3. Then a sample of β̃
t
is obtained by means of

its linear dependence on β̄
t
.
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(3) Discard all the iterations for which t ≤ 100 to account the burn-in
period as discussed in Section 5.3.

(4) If k ≤M , compute the probability P (βk > 0|β1 > 0, . . . , βk−1 > 0)
= T−1

2

∑T2+100
t=101 P (βk > 0|βk ∼ N(µtβk , (σ

2
βk

)t)) using method (36)
in Section 5.4.

(5) If k > M , compute the probability P (βk > 0|β1 > 0, . . . , βk−1 > 0)
= T−1

1

∑T1+100
t=101 I(βtk > 0|βt1 > 0, . . . , βtk−1 > 0) using method (35)

in Section 5.4.

(6) If P (βk|β1 > 0, . . . , βk−1 > 0) obtained in Step (4) or (5) is less
than the reference value that corresponds to the current T2 or T1

in Table 2, respectively, then reset T2 or T1 using the value of the
next column in the table and restart the procedure from Step (2).
If not, the estimation of P (βk|β1 > 0, . . . , βk−1 > 0) is completed,
which renders the decomposed complexity cik,ik−1

or �t fik,ik−1
.

This was elaborated in Section 5.5.

3. The complexity and �t can be computed by ci =
∏K
k=1 cik,ik−1

and

fi =
∏K
k=1 fik,ik−1

shown in Section 5.1. Then, the Bayes factor for Hi

against Hu is BFiu = fi/ci.

6 Empirical applications in SEM

In this section, our procedure of evaluating order constrained hypotheses
will be illustrated using two classic SEM applications. One example concerns
con�rmatory factor analysis (CFA), and the other example concerns multiple
regression model.

6.1 Con�rmatory factor analysis

In the �rst example, we reanalyze a dataset built into lavaan called Holzinger-
Swineford1939 (Rosseel, 2012). This dataset is taken from the Holzinger and
Swineford 1939 (H&S) study, which is a commonly used example in factor
analysis. The raw dataset consists of scores of 301 seventh and eighth grade
students from the Pasteur School (n=145) and Grant-White School (n=156)
who participated in 26 psychological aptitude tests. In our example, only
a subset with 9 variables of the complete data is extracted to measure 3
correlated latent variables, each with three indicators, i.e.,

• a visual factor (ξ1) is measured by visual perception (x1), cubes (x2)
and lozenges (x3).
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Table 3: Descriptives for the variables in the con�rmatory factor analysis
Variable Mean S.D.

visual perception x1 4.94 1.17
cubes x2 6.09 1.18

lozenges x3 2.25 1.13
paragraph x4 3.06 1.16
sentence x5 4.34 1.29

word mean x6 2.19 1.10
addition x7 4.19 1.09
dots x8 5.53 1.01

straight curved x9 5.37 1.01

• a textual factor (ξ2) is measured by paragraph comprehension (x4),
sentence completion (x5) and word meaning (x6)

• a speed factor (ξ3) is measured by addition (x7), counting of dots (x8)
and discrimination of straight and curved capitals (x9).

The descriptives for the observed variables are given in Table 3, whereas
the relations between latent variables and their indicators are formulated
in the next paragraph and expressed using path notation (without showing
measurement errors) in Figure 1.

The con�rmatory factor analysis model for the H&S data can be repre-
sented as:

x = Λxξ + εx, (38)

where x = (x1, . . . , x9)T denotes observed variables, ξ = (ξ1, ξ2, ξ3)T denotes
latent variables,

ΛT
x =

 θ1 θ2 θ3 0 0 0 0 0 0
0 0 0 θ4 θ5 θ6 0 0 0
0 0 0 0 0 0 θ7 θ8 θ9

 (39)

is a matrix of factor loadings, and εx is a 3× 1 vector of measurement errors
with εx ∼ N(0,Ψεx) and Ψεx being its covariance matrix. The covariance
matrix of observed variables is given by:

Σx = ΛxΦξΛ
T
x + Ψεx , (40)

where the factor covariance matrix Φξ is a symmetric matrix:

Φξ =

 φ11 φ12 φ13

φ12 φ22 φ23

φ13 φ23 φ33

 . (41)
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Figure 1: Con�rmatory factor analysis

Because the con�rmatory factor analysis model is a measurement model
without a structural model, we can simply specify this model using lavaan

syntax in R (see Appendix A). To ensure that the target parameters are com-
parable, we standardize them all. As is elaborated in Appendix A, lavaan
provides both the standardized estimates and covariance matrix of target
parameters. Recall that this is all the information that Bain needs to com-
pute Bayes factors. Furthermore, in factor analysis models, indicators are
required to both identify the model and set a metric for latent variables.
This can be typically achieved either by standardizing the variances of la-
tent variables or by constraining one factor loading per latent variable to 1.
In this example, the former way is chose.

Factor loadings indicate the degree of correspondence between the factor
and the indicator, with higher loadings making the indicator more repre-
sentative of the factor. Researchers might be interested in the issue which
indicator plays the most important role in de�ning a factor. For instance,
the �rst indicator of every factor may be expected to be strongest, which
can be represented by the following hypothesis

H1 :
θ1 > {θ2, θ3}
θ4 > {θ5, θ6}
θ7 > {θ8, θ9}

. (42)
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We can also test a hypothesis with respect to the structure of the correlations
between the latent variables. For example, we can evaluate whether the
correlation between visual and textual is larger than the correlation either
between visual and speed or between textual and speed:

H2 : φ12 > {φ13, φ23}. (43)

Using R package Bain (the user manual of Bain can be found in Appendix
B) to compute Bayes factors for H1 against Hu or H1c renders BF1u = 0.076
or BF11c = 0.073. For H2 against Hu or H2c , Bain renders BF2u = 1.33 or
BF22c = 1.59. These results imply that hypothesis H1 is not supported by
the data, and the evidence from the data for H2 is not convincing because
BF2u or BF22c is quite close to 1.

6.2 Multiple regression with latent variables

In a study reported by Warren, White, and Fuller (1974) (data available on
the Web at http://tinyurl.com/warren-1974), a sample of 98 managers
of farmer cooperatives was selected with the objective of studying manage-
rial behavior. They postulated that a latent variable manager performance
(η) was predicted by three correlated latent variables, i.e., knowledge (ξ1),
orientation (ξ2) and satisfaction (ξ3), and an observed variable training (x4).
The latent variables η, ξ1, ξ2, and ξ3 were measured based on qualitative
and quantitative answers to identical questionnaires collected from a random
sample of managers in farmer cooperatives. These variables are assumed to
be measured with error, and the errors of measurement were computed using
the split halves procedure (Warren, et al., 1974) for all variables subject to
measurement error:

• η is measured by y1 and y2,

• ξ1 is measured by x11 and x12,

• ξ2 is measured by x21 and x22,

• ξ3 is measured by x31 and x32.

The observed variables are described in Table 4 and the graphical speci�ca-
tion of this structural equation model is found in Figure 2.

As can be seen from Figure 2, the relations of the variables can be repre-
sented by a multiple regression model with η, ξ1, ξ2, and ξ3 that are latent.
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Table 4: Descriptives for the variables in the multiple regression model
Variable Mean S.D.

y1 1.06 0.16
y2 1.05 0.15
x11 1.43 0.30
x12 1.33 0.24
x21 2.84 0.43
x22 2.91 0.38
x31 2.54 0.34
x32 2.47 0.32
x4 2.12 0.31

The measurement model is given by

y = Λyη + εy

x = Λxξ + εx, (44)

where x = (x11, x12, x21, x22, x31, x32)T denotes observed variables, and η
and ξ = (ξ1, ξ2, ξ3)T are latent variables. For the structural model, we have

η = θ0 + θ1ξ1 + θ2ξ2 + θ3ξ3 + θ4x4 + δ, (45)

where θ0 is the intercept, θ1, θ2, θ3, and θ4 are regression coe�cients, and
δ ∼ N(0, σ2) is the residual. This regression model is analyzed in lavaan

(see Appendix A). We standardize the coe�cients to make them comparable.
Using the standardized estimates and covariance matrix of these coe�cients
from lavaan, Bain can compute Bayes factors.

The hypothesis we evaluated is based on the results obtained by Warren
et al. (1974) It states that knowledge is the strongest predictor followed by
orientation, training and satisfaction. The resulting hypothesis is

H3 : θ1 > θ2 > θ4 > θ3. (46)

This hypothesis can be compared to, for example, knowledge is stronger than
orientation followed by satisfaction and training:

H4 : θ1 > θ2 > θ3 > θ4, (47)

and training is stronger than satisfaction followed by orientation and knowl-
edge:

H5 : θ4 > θ3 > θ2 > θ1. (48)
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Figure 2: Multiple regression with latent variables

Table 5: Bayes factors and PMPs of H3, H4 and H5

BFic PMPs

H3 11.90 0.785
H4 2.676 0.214
H5 0.010 0.001

The results of the evaluation of these three hypotheses using Bain are dis-
played in Table 5 (the user manual of Bain can be found in Appendix B).
As can be seen, there is evidence in favor of H3, no convincing evidence for
H4, and evidence against H5. Furthermore, it can be seen from the PMPs
introduced in (15) that H3 receives the largest support from the data.

7 Discussion

Order constrained hypotheses provide a representation of a researcher's the-
ory with respect to the relations between the parameters of interest in SEM
models. We developed a Bayes factor that can evaluate these hypotheses
in a direct manner. A very vague prior was proposed that incorporates the
covariance structure of the target parameters in the data. A proof was given
that the prior probability that the order constraints hold, a key ingredient
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of the Bayes factor when testing order constrained hypotheses, was invariant
for linear transformations of the data.

Furthermore, a new algorithm was developed to ensure fast computa-
tion to ensure general utilization of the methodology by applied researchers.
The methodology was implemented in the R package Bain which only needs
the estimates and covariance matrix of target parameters (which can be ob-
tained from the free R-package lavaan), and one or more restriction matrices
representing a researcher's expectations. The output from Bain consists of
Bayes factors and posterior probabilities for the hypotheses. These can be
used which provide a direct answer about the relative evidence in the data
between the hypotheses under investigation.

Appendix

A Estimates and covariance matrix obtained using

lavaan

Bain uses the estimates and covariance matrix of target parameters to com-
pute Bayes factors. These can be obtained from the R package lavaan

(Rosseel, 2012). This appendix illustrates how to obtain the estimates and
covariance matrix of target parameters using the two examples discussed in
Section 6.

First of all, researchers need to install the version 0.5-18 or higher version
of lavaan by starting R and typing install.packages("lavaan"). Note
that R should be upgraded to R.3.5.0 or a higher version. The user manual
of the latest version of lavaan can be found at
http://cran.r-project.org/web/packages/lavaan/lavaan.pdf.
The following R syntax renders the estimates and covariance matrix for the
CFA model presented in Section 6.1.

# Load lavaan package.

library(lavaan)

# Specify the CFA model.

CFA.model <- 'visual =� x1 + x2 + x3

textual =� x4 + x5 + x6

speed =� x7 + x8 + x9'

fit<-cfa(CFA.model,data=HolzingerSwineford1939,std.lv = TRUE)
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# Obtain standardized estimates of parameters

estimate<-standardizedSolution(fit)

# Obtain standardized covariance matrix of parameters.

Sigma <- lavInspect(fit, "vcov.std.all")

Sigma[1:9,1:9] # For target parameters in (42)
Sigma[19:21,19:21] # For target parameters in (43)

The output of standardizedSolution(fit) for the CFA model is
lhs op rhs est.std se z pvalue

1 visual =� x1 0.772 0.055 14.041 0

2 visual =� x2 0.424 0.060 7.105 0

3 visual =� x3 0.581 0.055 10.539 0

4 textual =� x4 0.852 0.023 37.776 0

5 textual =� x5 0.855 0.022 38.273 0

6 textual =� x6 0.838 0.023 35.881 0

7 speed =� x7 0.570 0.053 10.714 0

8 speed =� x8 0.723 0.051 14.309 0

9 speed =� x9 0.665 0.051 13.015 0
...
22 visual �� textual 0.459 0.064 7.189 0

23 visual �� speed 0.471 0.073 6.461 0

24 textual �� speed 0.283 0.069 4.117 0

Note that the label visual =� x1 denotes the factor loading θ1 relating
x1 to ξ1 and the label visual �� textual denotes the covariance φ12 be-
tween ξ1 and ξ2. We only show the results for nine factor loadings used in
(42) and three covariances used in (43). The standardized estimates of the
target parameters are given in the column under est.std. For example, the
estimate of θ4 is 0.852 in the row of textual =� x4, and the estimate of φ23

is 0.283 in the row of textual �� speed.
The output of Sigma contains the standardized covariance matrix of the

target parameters. We only show the covariance matrix Sigma[19:21,19:21]
of φ12, φ13, and φ23:

visual��textual visual��speed textual��speed

visual��textual 0.0040678110 0.0007276616 0.001156340

visual�� speed 0.0007276616 0.0053037342 0.001480068

textual�� speed 0.0011563398 0.0014800678 0.004723718

The following R syntax renders the estimates and covariance matrix for
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the regression model in Section 6.2.
# Load lavaan package.

library(lavaan)

# Set R working director where the data is saved.

setwd("C:/Example2")

# Read data "example2.dat".

performance<-read.table("example2.dat",header=TRUE)

# Specify the regression model.

perform.model<-'

# measurement model

kno =� x11+x12

ori =� x21+x22

sat =� x31+x32

per =� y1+y2

# regressions

per � kno + ori + sat + tra'

fit<-sem(perform.model,data=performance,std.lv = TRUE)

# Obtain standardized estimates and covariance matrix

standardizedSolution(fit)

Sigma <- lavInspect(fit, "vcov.std.all")

Sigma[9:12,9:12] # For target parameters in (46), (47), (48)

The output of standardizedSolution(fit) for the regression model is
lhs op rhs est.std se z pvalue

...
9 per � kno 0.478 0.161 2.960 0.003

10 per � ori 0.336 0.165 2.030 0.042

11 per � sat 0.151 0.105 1.440 0.150

12 per � tra 0.286 0.084 3.403 0.001
...

Note that the label per � kno denotes the coe�cient θ1 which relates
η to ξ1 in the regression model (45). We only show the results for the
four regression coe�cients used in (46), (47), and (48). The standardized
estimates of the target parameters are given in the column under est.std.
For example, the estimate of θ1 is 0.478 in the row of per � kno, and the
estimate of θ4 is 0.286 in the row of per � tra.
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The output of Sigma[9:12,9:12] renders the standardized covariance
matrix of θ1, . . . , θ4:

per�kno per�ori per�sat per�tra

per�kno 0.026034895 -0.0223249106 -0.0050273595 -0.0011610045

per�ori -0.022324911 0.0273346337 0.0043904540 -0.0007619234

per�sat -0.005027359 0.0043904540 0.0110250662 -0.0002713825

per�tra -0.001161004 -0.0007619234 -0.0002713825 0.0070519650

The standardized estimates and covariance matrix of target parameters
obtained in lavaan can be used as input for Bain. This will be shown in the
user manual in Appendix B.

B User Manual of Bain

Bain is an R package developed for the evaluation of order constrained hy-
potheses using the algorithm presented in the paper. It can be downloaded
at https://informative-hypotheses.sites.uu.nl/software/bain/. Windows, Mac,
and Linux versions are o�ered, respectively, by downloaded �les Bain_xxx.zip,
Bain_xxx.tgz, and Bain_xxx.tar.gz, where xxx denotes package version.
After downloading the package, for example, windows users can install Bain
in R by
install.packages(".../Bain_xxx.zip", repos = NULL)

This appendix provides a brief user manual of Bain. The detailed manual
can be found on the website. The core function of Bain package is
Bain(estimate, Sigma, grouppara = 0, jointpara = 0, n,

ERr = NULL, IRr = NULL, ..., seed = 100, print = TRUE).
The input arguments contain the estimates and covariance matrix of target
parameter, number of target parameters, sample size, and the restriction
matrix for each hypothesis under consideration. The output of Bain are the
Bayes factor and PMP for each hypothesis. We will use the example from
Section 6.2 to illustrate the use of Bain.

The estimates and covariance matrix of target parameters can be ob-
tained using R package lavaan as shown in Appendix A. For example, from
the output of lavaan for the regression model, we observe in R syntax :

# estimates

estimate<-c(0.478, 0.336, 0.151, 0.286)

# Covariance matrix
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Sigma<-matrix(c(0.026, -0.022, -0.005, -0.001

-0.022, 0.027, 0.004, -0.001

-0.005, 0.004, 0.011, -0.000

-0.001, -0.001, -0.000, 0.007), nrow = 4)

In addition, the sample size is n = 98, and the number of target parameters
is jointpara = 4. Argument grouppara indicates the number of group spe-
ci�c parameters, which is zero because in the regression model there is no
group speci�c parameter. Furthermore, argument IRr speci�es order con-
strained hypotheses, while argument ERr for equality constraints will not
be used since this paper only deals with order constrained hypotheses. The
paragraph below demonstrates how IRr can be constructed to represent or-
der constrained hypotheses.

As was shown in Section 2.2, an order constrained hypothesis Hi can be
formulated by Riθ > ri. Each constraint Rikθ > rik for k = 1, . . . ,K in
the hypothesis can be written as Rik1θ1 + . . .+ RikJθJ > rik, where K and
J are numbers of constraints and parameters in Hi, respectively. Note that
every parameter should be moved to the left hand side of the inequality sign
">", and the constant should be moved to the right hand. In the restriction
matrix IRr, the constraint Rikθ > rik can be expressed by the line

Rik1 Rik2 . . . RikJ rik.
For example,

• θ1 + θ2 + θ3 > 0 corresponds to
1 1 1 0

• θ1 − 2θ2 + 3θ3 > 0.5 corresponds to
1 -2 3 0.5

• θ1 − 2 > θ2 − θ3 corresponds to
1 -1 1 2

• θ1 > θ2 > θ3 corresponds to
1 -1 0 0
0 1 -1 0

• θ1 − θ2 > θ3 − θ4 > θ5 − θ6 corresponds to
1 -1 -1 1 0 0 0
0 0 1 -1 -1 1 0

Thus, in the regression model in Section 6.2, three competing order con-
strained hypotheses H3 : θ1 > θ2 > θ4 > θ1, H4 : θ1 > θ2 > θ3 > θ4, and
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H5 : θ4 > θ3 > θ2 > θ1 can be represented in R script, respectively, by

# order constrained hypotheses

IRr1<-matrix(c(1, -1, 0, 0, 0,

0, 1, 0, -1, 0,

0, 0, -1, 1, 0), nrow = 3, byrow = TRUE)

IRr2<-matrix(c(1, -1, 0, 0, 0,

0, 1, -1, 0, 0,

0, 0, 1, -1, 0), nrow = 3, byrow = TRUE)

IRr3<-matrix(c(-1, 1, 0, 0, 0,

0, -1, 1, 0, 0,

0, 0, -1, 1, 0), nrow = 3, byrow = TRUE)

# no equality constrained hypotheses

ERr1<-ERr2<-ERr3<-NULL

Once the estimates and covariance matrix of parameters, number of pa-
rameters, sample size, and order constrained hypotheses are speci�ed, run-
ning the following line in R renders test results for the example of regression
model:

res<-Bain(estimate, Sigma, grouppara = 0, jointpara = 4, n = 98,

ERr1, IRr1, ERr2, IRr2, ERr3, IRr3)

The output of Bain function is stored in a list which consists of $testResult
and $BFmatrix. The $testResult reports �ts, complexities, Bayes factors
and PMPs of each hypothesis under consideration. The $BFmatrix reports
Bayes factor matrix for competing hypotheses from which users can easily
obtain Bayes factor BFii′ for one hypothesis against another. Take again
the regression model for example, the output are

res$testResult

fit complexity BF PMPa PMPb

H1 0.217 0.023 11.902 0.785 0.726

H2 0.049 0.019 2.676 0.214 0.197

H3 0.000 0.019 0.010 0.001 0.001

res$BFmatrix
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H1 H2 H3

H1 1.000 3.677 914.135

H2 0.272 1.000 248.615

H3 0.001 0.004 1.000

Note that in the �rst table BF displays Bayes factors of order constrained hy-
potheses against their complements. In addition, PMPa lists PMPs excluding
the unconstrained hypothesis, whereas PMPb includes. In the second table, we
can observe for example the Bayes factor for H1 against H2 is BF12 = 3.677,
and the Bayes factor for H2 against H1 is BF21 = 0.272.
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