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Abstract1

Informative hypotheses are increasingly being used in psychologi-2

cal sciences because they adequately capture researchers’ theories and3

expectations. In the Bayesian framework, the evaluation of informa-4

tive hypotheses often makes use of default Bayes factors such as the5

fractional Bayes factor. This paper approximates and adjusts the frac-6

tional Bayes factor such that it can be used to evaluate informative7

hypotheses in general statistical models. In the fractional Bayes fac-8

tor a fraction parameter must be specified which controls the amount9

of information in the data used for specifying an implicit prior. The10

remaining fraction is used for testing the informative hypotheses. We11

discuss different choices of this parameter and present a scheme for12

setting this parameter. Furthermore, a software package is developed13

to compute the approximated adjusted fractional Bayes factor. Using14

this software package, psychological researchers can evaluate informa-15

tive hypotheses by means of Bayes factors in an easy manner. Two16

empirical examples are used to illustrate the procedure.17

18

Keywords: Fractional Bayes factor, Informative hypothesis, Nor-19

mal approximation, Prior sensitivity.20

1 Introduction21

One of the objectives of psychological studies is to test hypotheses that repre-22

sent scientific expectations. The main tool that is available for this purpose is23

null hypothesis significance testing where the goal is to falsify a null hypoth-24

esis of “no effect”. On the other hand, psychologists may expect, for example,25

that the learning ability of children is stronger than the learning ability of26

adolescents which, in turn, is stronger than the learning ability of adults,27

or it is expected that a patient’s psychological disease would decrease after28

the first therapy, and decrease further after subsequent therapies. These29

expectations cannot be formulated by the traditional null hypothesis. In-30

stead, such expectations can be translated to so-called informative hypothe-31

ses which assume a specific structure of the model parameters (Hoijtink,32

2012). An informative hypothesis consists of equality and/or inequality con-33

straints among the parameters of interest in a statistical model. For example,34

three equal parameters can be represented by an equality constrained hy-35

pothesis H1 : θ1 = θ2 = θ3, and three ordered parameters can be represented36

by an inequality constrained hypothesis H2 : θ1 < θ2 < θ3. Thus class of in-37

formative hypotheses covers a much broader range of scientific expectations38

than the class of standard null hypotheses. In addition, by testing competing39
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informative hypotheses directly against each other a researcher obtains a di-40

rect answer which scientific theory is most supported by the data. The inter-41

ested reader is referred to http://informative-hypotheses.sites.uu.nl/42

to the tab/publiciations/applications for an overview of psychological re-43

search in which informative hypotheses were used.44

Informative hypothesis testing has drawn a lot of attention both in fre-45

quentist statistics (Barlow, Bartholomew, Bremner, & Brunk, 1972; Silva-46

pulle & Sen, 2004) and in Bayesian statistics (Hoijtink, 2012). In the fre-47

quentist framework, hypothesis testing with inequality constraints has been48

studied over fifty years starting with (Bartholomew, 1959). Some recent49

contributions can be found in van de Schoot, Hoijtink, and Deković (2010),50

and Klugkist, Bullens, and Postma (2012). Bayesian evaluation of informa-51

tive hypotheses by means of the Bayes factor is relatively new. A decade52

ago, Klugkist, Laudy, and Hoijtink (2005) started using Bayes factors to53

evaluate inequality constrained hypotheses in ANOVA models. Follow-up54

research appears in Klugkist and Hoijtink (2007) for Bayesian testing of in-55

equality and about equality constrained hypotheses, in Mulder et al. (2009)56

for Bayesian informative hypothesis testing in repeated measures models,57

in Klugkist, Laudy, and Hoijtink (2010) for Bayesian evaluation of equality58

and inequality constrained hypotheses in contingency tables, and in Mulder,59

Hoijtink, and Klugkist (2010) for Bayesian model selection of equality and60

inequality constrained hypotheses in the context of multivariate normal lin-61

ear models. The developments on the use of Bayes factors for informative62

hypothesis testing are summarized in Hoijtink (2012). However, these stud-63

ies are limited to assess informative hypotheses in specific models and cannot64

yet be applied in other models, e.g., confirmatory factor analysis or logis-65

tic regression. More recently, van de Schoot, Hoijtink, Hallquist, and Boelen66

(2012) enables researchers to test inequality constrained hypotheses in struc-67

tural equation models, Gu, Mulder, Deković, and Hoijtink (2014) allows to68

evaluate inequality constrained hypothesis in general statistical models, and69

Böing-Messing, Van Assen, Hofman, Hoijtink, and Mulder (2017) enables70

researchers to test informative hypotheses on group variances. Furthermore,71

the usefulness of the Bayes factor for testing hypotheses in psychological72

research was highlighted in various studies in a special issue on the topic73

(Mulder & Wagenmakers, 2016). Although these studies enable hypothesis74

testing in a large number of statistical models using the Bayes factor, the75

available methods for testing hypotheses with both equality constraints and76

inequalities are still limited.77

The incessant debate between frequentist hypothesis testing and Bayesian78

hypothesis testing (Wagenmakers, 2007) has highlighted an advantage of the79
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Bayes factor: it quantifies the relative support in the data for one hypothesis80

against another (Kass & Raftery, 1995). This cannot be done using classical81

p-values. Psychological researchers can quantify how much the data favor82

a hypothesis relative to another hypothesis by means of the Bayes factor.83

However, the popularity of the Bayes factor is limited because of two reasons:84

the specification of the prior can be a difficult task, especially when prior85

information is weak or completely unavailable, and the computation can be86

very intensive when the statistical model is complex. To break these barriers,87

Bayesian statisticians have presented several default Bayes factors based on88

default priors. Default priors usually do not reflect subjective prior beliefs89

and have distributional forms chosen such that the Bayes factor can easily be90

computed. Examples for default Bayes factors are JZS Bayes factor (Jeffreys,91

1961; Zellner & Siow, 1980; Rouder, Speckman, Sun, Morey, & Iverson,92

2009), partial Bayes factors, Bayes factor based on expected posterior priors93

(Pérez & Berger, 2002), intrinsic Bayes factor (Berger & Pericchi, 1996) and94

fractional Bayes factor (O’Hagan, 1995). The last two Bayes factors are95

closely related to the so called partial Bayes factor (de Santis & Spezzaferri,96

1999).97

In the partial Bayes factor the data is split into two parts: one part98

is used as a training sample to update an improper noninformative prior99

distribution, and the remaining part is used to compute the Bayes factor.100

The training sample is proper if it renders a proper updated prior. Further-101

more, the training sample is called minimal if any of its subsets is not proper102

(Berger & Pericchi, 2004). Both the intrinsic Bayes factor and the fractional103

Bayes factor use the concept of the partial Bayes factor method (de Santis &104

Spezzaferri, 1997, 1999). The intrinsic Bayes factor is an average of the par-105

tial Bayes factors based on all possible minimal training samples. Because106

of the use of all possible minimal training samples, the computation of in-107

trinsic Bayes factor can be intensive especially when the sample size and the108

size of the minimal training sample are large. Alternatively, the fractional109

Bayes factor takes a small fraction b of the likelihood of the complete data110

(O’Hagan, 1995). The updated proper prior in the fractional Bayes approach111

is then implicitly specified from a noninformative prior and a fraction of full112

likelihood (Gilks, 1995; Moreno, 1997; de Santis & Spezzaferri, 1999; Mul-113

der, 2014b). In this paper, we shall refer to updated priors following from114

fractional Bayes methodology as fractional priors. The remaining fraction115

of the likelihood is then used for testing the hypotheses of interest. As will116

be shown in this paper, the fractional Bayes factor is computationally easy.117

Recently, Fouskakis, Ntzoufras, and Draper (2015) presented power expected118

posterior priors, which are similar to fractional priors in the sense that both119
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of them are specified using a fraction of a likelihood function. The main120

difference is that the fractional prior comes from a fraction of likelihood of121

the observed data, whereas the power expected posterior prior follows from122

a fraction of the likelihood of imaginary training data coming from a prior123

predictive distribution.124

In this paper, we focus on the fractional Bayes factor as it stands out for125

its convenience of evaluating informative hypotheses (Mulder, 2014b). Re-126

cently, Mulder (2014b) proposed an adjustment of the fractional Bayes factor127

where the fractional prior was shifted around the null value. This approach128

resulted in an adjusted fractional Bayes factor that converges faster to a129

true inequality constrained hypothesis. However, the current applications of130

(adjusted) fractional Bayes factors in informative hypothesis testing are still131

within the class of multivariate normal linear models.132

This paper proposes an approximation of a fractional Bayes factor to133

extend its applicability for testing informative hypotheses for more general134

models. These models can be generalized linear (mixed) models (McCullogh135

& Searle, 2001) such as logistic regression models and multilevel models,136

and structural equation models (Kline, 2011) such as path models, confir-137

matory factor analysis models and latent class models. Due to large sample138

theory (Gelman, Carlin, Stern, & Rubin, 2004, p.101-107), the posterior139

distribution of the parameters in each model can be approximated by a140

(multivariate) normal distribution. This paper also approximates the im-141

plicit fractional prior with a (multivariate) normal distribution as a gen-142

eral methodology to ensure a fast computation of the (adjusted) fractional143

Bayesian factor. Based on these approximations we can approximate a frac-144

tional Bayes factor to evaluate informative hypotheses in general statistical145

models. In addition, we discuss different choices of the fraction (O’Hagan,146

1995; Gu, Mulder, & Hoijtink, 2016), which is a tuning parameter in the147

fractional prior, and provide a guideline for choosing this fraction. Further-148

more, an important issue in Bayesian hypothesis testing is the consistency149

of the Bayesian procedure. Previous studies have discussed the consistency150

of intrinsic Bayes factor (Casella, Giron, & Moreno, 2009), fractional Bayes151

factor (O’Hagan, 1997; de Santis & Spezzaferri, 2001), and posterior model152

probabilities (Moreno, Giron, & Casella, 2015). In this paper, the consis-153

tency of the approximate adjusted fractional Bayes factor will be elaborated154

and illustrated.155

This paper is organized as follows. Section 2 introduces the informative156

hypothesis in general statistical models, and illustrates how the informative157

hypothesis is constructed based on researchers’ expectation by means of two158

empirical examples. Thereafter, Section 3 elaborates the specification of159
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the adjusted fractional prior and the posterior distribution using normal160

approximations. Based on the specified prior and posterior distributions,161

the approximated adjusted fractional Bayes factor is derived and a software162

package is presented for the evaluation of informative hypotheses in general163

statistical models. In Section 4 we discuss different choices of the fraction,164

and conduct a sensitivity study for the fractional Bayes factors with those165

choices. Subsequently, Section 5 revisits the two empirical examples to show166

how to evaluate informative hypotheses using the proposed fractional Bayes167

factors. This paper ends with a short conclusion.168

2 Informative hypotheses in general statistical mod-169

els170

A statistical model is described by the likelihood function f(X|θ, ζ), where171

X denotes the data, θ contains the parameters that are used to specify172

informative hypotheses, and ζ contains the nuisance parameters. Informa-173

tive hypotheses are constructed using equality and/or inequality constraints174

based on the theories or expectations of researchers. The general form of the175

informative hypothesis is given by176

Hi : Ri0θ = ri0 ,Ri1θ > ri1 , (1)

where Ri0 and Ri1 are the restriction matrices for equality and inequality177

constraints in Hi, respectively, and ri0 and ri1 contain constants. Note that178

the number of rows in Ri0 equals the number of equality constraints, the179

number of rows in Ri1 equals the number of inequality constraints, and the180

numbers of columns in Ri0 and Ri1 equal the length of θ. For example,181

hypothesis H1 : θ1 = 2θ2 = 3θ3 > 4θ4 < 5 corresponds to182

R10θ =

[
1 −2 0 0
0 2 −3 0

]
θ1

θ2

θ3

θ4

 =

[
0
0

]
= r10 ,

R11θ =

[
0 0 3 −4
0 0 0 −4

]
θ1

θ2

θ3

θ4

 > [ 0
−5

]
= r11 .

Note that a range constraint, in which the parameters of interest are con-183

strained between two values, can be written as two inequality constraints.184
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For example, hypothesisH2 : 0 < θ < 1 can be expressed byH2 : R21θ > r21 ,185

where R21 = (1,−1)T and r21 = (0,−1)T . This hypothesis can be seen as186

a hypothesis where it is expected that θ is approximately equal to 0.5 with187

maximal deviation of 0.5, i.e., θ ≈ 0.5⇔ |θ− 0.5| < 0.5, where the maximal188

deviation of 0.5 should be specified subjectively by the user.189

An informative hypothesis Hi can be tested against the unconstrained190

hypothesis191

Hu : θ is unconstrained, (2)

against its complement192

Hic : not Hi, (3)

which expresses what a researchers does not expect, or against another in-193

formative hypothesis194

Hi′ : R
i
′
0
θ = r

i
′
0
,R

i
′
1
θ > r

i
′
1
. (4)

It should be noted that when an informative hypothesis Hi contains at least195

one equality constraint, the complement of Hi is the same as the uncon-196

strained hypothesis Hu.197

Before evaluating the informative hypotheses, the parameters of interest198

may need to be standardized in some situations. The need of standard-199

ization depends on the statistical model and informative hypothesis under200

evaluation. On the one hand, the parameters have to be standardized when201

comparing, e.g., coefficients in regression models and factor loadings in con-202

firmatory factor analysis. For example, testing whether the regression coeffi-203

cient θ1 is larger than θ2 requires the standardization of θ1 and θ2, because a204

large coefficient can also result from a large scale of the corresponding predic-205

tor. On the other hand, it may not be necessary to standard the parameters206

θ if they are compared to constants, and it is undesirable to standardize the207

parameters θ if they represent the means. For instance, testing whether a208

regression coefficient is larger than 0 or testing whether the mean of group209

1 is smaller than the mean of group 2 does not require standardization.210

If standardization is required, Gu et al. (2014) discussed two ways to do211

this: (1) standardize all observed and latent variables, or (2) use standard-212

ized parameters. In the situation considered by Gu et al. (2014), there was213

little difference between the performances of the two methods. Therefore,214

researchers can use either of them if necessary.215

In what follows, we will use two empirical examples to illustrate how216

researchers’ expectations can be expressed by informative hypotheses.217
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Table 1: Data descriptive for variables in regression model
yi x1i x2i x3i

mean 965.92 5.91 35.24 16.86
standard deviation 74.82 1.36 26.76 2.27

2.1 Example 1 : multiple regression218

The first example concerns a multiple regression model used in Guber (1999)219

to investigate the relation between the educational costs of the school and220

the academic performance of the students. The data were collected in221

50 U.S. states (available at www.amstat.org/publications/jse/secure/222

v7n2/datasets.guber.cfm). The performance of the students is measured223

by the average total SAT score yi ranging from 400 to 1600. Its predictors224

are the average public school expenditure x1i, the percentage of students225

taking the SAT exams x2i, and the average pupil/teacher ratio x3i. The de-226

scriptives of the dependent variable yi and independent variables x1i, x2i and227

x3i are shown in Table 1. The relationship between the student performance228

and its predictors is given in a regression model.229

yi = θ0 + θ1x1i + θ2x2i + θ3x3i + εi, (5)

where θ0 is the intercept, θ1, θ2 and θ3 are the regression coefficients, and230

εi ∼ N(0, σ2) denotes the residuals with σ2 being their residual variance.231

For this regression model, the likelihood is232

f(X|θ, ζ) =

n∏
i=1

1

(2πσ2)1/2
exp {− 1

2σ2
(yi − θ0 − θ1x1 − θ2x2 − θ3x3)2},

(6)
where n = 50 denotes the sample size, and θ = (θ1, θ2, θ3)T and ζ = (θ0, σ

2).233

Guber (1999) theorized that higher education expenditures results in234

better performance of the students in SAT exams, which implies that the co-235

efficient θ1 of the predictor x1i is positive. In addition, in those states with a236

small percentage of the students taking SATs, the students are expected to237

do well because they have self-selected themselves into the SAT exam which238

is only required by universities with a high prestige. This implies that the239

coefficient θ2 of the predictor x2i is negative. Furthermore, although a lower240

pupil/teacher ratio would be associated with better performance, a school241

needs to spend more money on education and therefore this predictor over-242

laps with the expenditures. This suggests that the coefficient θ3 of predictor243
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x3i is zero. Consequently, we specify the informative hypothesis:244

H1 : θ1 > 0, θ2 < 0, θ3 = 0 (7)

with R10 = (0, 0, 1), R11 =

[
1 0 0
0 −1 0

]
, θ = (θ1, θ2, θ3)T , r10 = 0, and245

r11 = (0, 0)T in H1 : R10θ = r10 ,R11θ > r11 . Hypothesis H1 can be tested246

against its complement247

H1c : not H1. (8)

2.2 Example 2: repeated measures ANOVA248

We reanalyze the example of the repeated measures ANOVA used in Howell249

(2012, p.462) based on an experiment with relaxation therapy. The experi-250

ment investigated the duration of nine patients’s migraine headaches before251

and after relaxation training. The duration of headaches is measured by the252

number of hours per week. Our example uses the data for the last two weeks253

of the baseline where patients received no training and the last two weeks254

of training. Therefore, the data shown in Table 2 consists of four dependent255

variables, i.e., the number of hours with a headache per week for nine pa-256

tients in four weeks. The random effects model for these dependent variables257

is (Hox, 2010, p.83):258

yij = µ+ ηi + τj + εij , (9)

where yij for i = 1, . . . , 9 and j = 1, . . . , 4 denotes the four dependent vari-259

ables, µ denotes the grand mean, ηi ∼ N(0, σ2
η) denotes the random dif-260

ference for person i which is constant for different j, τj denotes the fixed261

measurement difference for week j which is constant for different i, and262

εij ∼ N(0, σ2
ε ) is the measurement error with respect to person i and week263

j. To investigate the effect of relaxation training, we specify the individual264

differences with a random effect and the treatment differences with a fixed265

effect. Thus, the mean for each measurement is266

θj = µ+ τj (10)

and Σ4
j=1τj = 0.267

The researchers expected a reduction of the duration of headaches after268

relaxation training. Furthermore, it is reasonable to expect that the mean269

durations are equal in the first two weeks of baseline and in the last two270

weeks of training to ensure that other factors do not influence the duration of271

headaches. These expectations can be expressed by the following informative272

hypothesis:273

H2 : θ1 = θ2 > θ3 = θ4 (11)
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Table 2: Data in repeated measures ANOVA
Baseline Training

Subject week 1 week 2 week 3 week 4
1 21 22 6 6
2 20 19 4 4
3 17 15 4 5
4 25 30 12 17
5 30 27 8 6
6 19 27 7 4
7 26 16 2 5
8 17 18 1 5
9 26 24 8 9

with R20 =

[
1 −1 0 0
0 0 1 −1

]
, R21 = [0, 1,−1, 0], θ = (θ1, θ2, θ3, θ4)T , r20 =274

(0, 0)T , and r21 = 0 in H2 : R20θ = r20 ,R21θ > r21 . We compare this275

hypothesis to another informative hypothesis representing that the mean276

number of headache hours continually declines in the four weeks:277

H2′ : θ1 > θ2 > θ3 > θ4, (12)

which only contains inequality constraints R
2
′
1
θ > r

2
′
1
with r

2
′
1

= (0, 0, 0)T278

and279

R
2
′
1

=

 1 −1 0 0
0 1 −1 0
0 0 1 −1

 .
The informative hypotheses constructed in these examples can be evalu-280

ated using Bayes factors, which will be elaborated in the next section. We281

will revisit these examples in Section 5 to display the results of the evaluation282

of these informative hypotheses.283

3 Approximated adjusted fractional Bayes factors284

The Bayes factor is the corner-stone of Bayesian hypothesis testing. It quan-285

tifies the relative evidence in the data for one hypothesis against another.286

The Bayes factor of an informative hypothesis Hi against another informa-287

tive hypothesis Hi′ is defined by their marginal likelihood ratio (Jeffreys,288
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1961; Kass & Raftery, 1995):289

BFii′ =
m(X|Hi)

m(X|Hi′ )
. (13)

In Bayesian hypothesis testing, the Bayes factor has a direct interpretation290

as the relative evidence from the data for one hypothesis against another. If291

BFii′ > 1 (BFii′ < 1), this implies that hypothesis Hi (Hi′ ) receives more292

support from the data. Specifically, if BFii′ = 5, then the support for Hi is293

5 times larger than for Hi′ . For researchers who are new to Bayes factors294

we recommend using the guidelines for the interpretation of Bayes factors as295

provided by Kass and Raftery (1995). The degree of evidence in favor of Hi296

can be classified as unconvincing for 1 < BFii′ < 3, positive for BFii′ > 3,297

strong for BFii′ > 20, and very strong for BFii′ > 150. However, these298

rules for interpreting Bayes factors are not strict and can differ in different299

contexts.300

The informative hypothesis Hi is nested in the unconstrained hypothesis301

Hu which does not contain any constraints on θ. When comparing Hi to Hu302

we can use the encompassing prior approach of Klugkist et al. (2005) where303

a prior is constructed under Hi via a truncation of the unconstrained (or304

encompassing) prior πu(θ, ζ) under Hu. The prior under Hi is then given305

by πi(θ, ζ) = c−1
i πu(θ, ζ)1Θi(θ), where ci =

∫∫
θ∈Θi

πu(θ, ζ)dθdζ is a nor-306

malizing constraint, and Θi = {θ|Ri0θ = ri0 ,Ri1θ > ri1} is the parameter307

space of θ in agreement with the informative hypothesis Hi. Consequently,308

the Bayes factor for the informative hypothesis against the unconstrained309

hypothesis can be expressed as:310

BFiu =

∫∫
θ∈Θi

πi(θ, ζ)f(X|θ, ζ)dθdζ∫∫
πu(θ, ζ)f(X|θ, ζ)dθdζ

=

∫∫
θ∈Θi

πu(θ, ζ)f(X|θ, ζ) · c−1
i∫∫

πu(θ, ζ)f(X|θ, ζ)dθdζ
dθdζ

= c−1
i

∫∫
θ∈Θi

πu(θ, ζ|X)dθdζ

=

∫∫
θ∈Θi

πu(θ, ζ|X)dθdζ∫∫
θ∈Θi

πu(θ, ζ)dθdζ
, (14)

where πu(θ, ζ|X) is the posterior distribution of θ and ζ under Hu. For311

example for hypothesis H1 : θ1 > 0, θ2 < 0, θ3 = 0 in (7) with equality and312

inequality constraints, where we denote θ = (θ1, θ2, θ3)T and ζ = (θ0, σ
2)T ,313
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the Bayes factor of H1 against the unconstrained alternative in (14) comes314

down to315

BF1u =

∫∫
θ1>0,θ2>0 πu((θ1, θ2, 0)T , ζ|X)dθdζ∫∫
θ1>0,θ2>0 πu((θ1, θ2, 0)T , ζ)dθdζ

=

∫
θ1>0,θ2>0 πu(θ1, θ2|θ3 = 0,X)πu(θ3 = 0|X)dθ∫

θ1>0,θ2>0 πu(θ1, θ2|θ3 = 0)πu(θ3 = 0)dθ

=
Pr(θ1 > 0, θ2 > 0|θ3 = 0,X)

Pr(θ1 > 0, θ2 > 0|θ3 = 0)

πu(θ3 = 0|X)

πu(θ3 = 0)
. (15)

Further note that for a hypothesis with only equality constraints, e.g., H0 :316

θ1 = θ2 = θ3 = 0, expression (14) is equal to the well-known Savage-Dickey317

density ratio (Dickey, 1971; Wetzels, Grasman, & Wagenmakers, 2010), i.e.,318

BF0u =
πu(θ = 0|X)

πu(θ = 0)
. (16)

Finally, for a hypothesis with only inequality constraints, say, H2 : θ1 >319

θ2 > θ3 > 0, expression (14) is equal to the ratio of posterior and prior320

probabilities that the inequality constraints hold under Hu, i.e.,321

BF2u =
P (θ1 > θ2 > θ3 > 0|X)

P (θ1 > θ2 > θ3 > 0)
. (17)

Thus, in order to compute the Bayes factor the unconstrained prior and322

corresponding unconstrained posterior need to be determined, and subse-323

quently the unconstrained prior and posterior need to be integrated over324

the constrained region under the informative hypothesis. In this section we325

propose a novel and general approach by using normal distributions to ap-326

proximate the unconstrained posterior and the unconstrained fractional prior327

to compute default Bayes factors.328

3.1 Fractional prior and posterior329

To avoid ad hoc or subjective specification of the unconstrained prior, we330

consider the approach of O’Hagan (1995) which is referred to as the fractional331

Bayes factor. A proper default prior is automatically generated by updating332

a noninformative improper prior πNu (θ, ζ) using a fraction b of the likeli-333

hood (Gilks, 1995). In the fractional Bayes factor the marginal likelihood of334
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hypothesis Hu is defined by335

mN
b (X|Hu) =

mN (X|Hu)

mN (Xb|Hu)
=

∫∫
πu(θ, ζ)Nf(X|θ, ζ)dθdζ∫∫
πu(θ, ζ)Nf(X|θ, ζ)bdθdζ

=

∫∫
f(X|θ, ζ)1−b πu(θ, ζ)Nf(X|θ, ζ)b∫∫

πu(θ, ζ)Nf(X|θ, ζ)bdθdζ
dθdζ

=

∫∫
f(X|θ, ζ)1−bπu(θ, ζ|Xb)dθdζ, (18)

where the proper default prior is defined by336

πu(θ, ζ|Xb) =
πu(θ, ζ)Nf(X|θ, ζ)b∫∫
πu(θ, ζ)Nf(X|θ, ζ)bdθdζ

. (19)

We shall refer to (19) as the fractional prior. Note that the marginal likeli-337

hood in the fractional Bayes factor in (18) is closely related to the marginal338

likelihood in the partial Bayes factor where a proper default prior obtained339

by training a noninformative prior with a small subset of the data, called a340

training sample, X(`), while the remaining part of the data, say, X(−`), is341

used for computing the marginal likelihood. The marginal likelihood in the342

fractional Bayes factor also abides this idea, but then by taking a fraction b343

of the data, denoted by Xb, to train a noninformative prior and then use the344

remaining fraction of the data, X1−b, for computing the marginal likelihood345

in (18). The advantage of the fractional Bayes factor is that it does not346

depend on the exact choice of the subset of the data because a fraction of347

the complete data is used (de Santis & Spezzaferri, 1999; O’Hagan, 1995).348

Following similar steps as in (14) and integrating the nuisance parameters349

out, the fractional Bayes factor of an informative hypothesis against the350

unconstrained hypothesis is given by (Mulder, 2014b),351

FBFiu =

∫
θ∈Θi

πu(θ|X)dθ∫
θ∈Θi

πu(θ|Xb)dθ
. (20)

3.2 Normal approximations of the fractional prior and pos-352

terior distributions353

Due to large sample theory (e.g., Gelman et al., 2004, p. 101), the marginal354

posterior in the numerator of (20) can be approximated using a normal355

distribution where the mean is equal to the maximum likelihood estimate356

and the covariance matrix is equal to the inverse of the Fisher information357

matrix, i.e.,358

πu(θ|X) ≈ N(θ̂, Σ̂θ), (21)
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where θ̂ and Σ̂θ denote the maximum likelihood estimate and covariance359

matrix of θ, respectively. Note that θ̂ and Σ̂θ can be obtained using statis-360

tical software, such as, Mplus (Muthén & Muthén, 2010) or the R-package361

lavaan (Rosseel, 2012). This will be further elaborated when we come back362

to the empirical examples in Section 5.363

The fractional prior in the denominator of (20) is also centered around364

the maximum likelihood estimate. However, it is based on a fraction b of the365

data which implies an approximated covariance matrix of Σ̂θ/b. Consider,366

for example, a normally distributed data set xi ∼ N(θ, σ2) with known σ2.367

The posterior of θ is given by πu(θ|X) = N(θ̂, σ̂2
θ) where θ̂ equals the sample368

mean x̄ and σ̂2
θ = σ2/n. In this setting the fractional prior of θ would369

be πu(θ|Xb) = N(θ̂, σ̂2
θ/b) = N(x̄, σ2/nb). For this reason we propose to370

approximate the fractional prior according to371

πu(θ|Xb) ≈ N(θ̂, Σ̂θ/b). (22)

3.3 Adjusting the prior mean372

It has been suggested to center the prior distribution of θ around the focal373

point of interest (e.g., Zellner and Siow (1980) and Jeffreys (1961, p.268-374

274) for null hypothesis testing, and Mulder (2014b) for testing informative375

hypothesis). Suppose, for example, we evaluate H1 : θ ≤ 0 against its376

complement H2 : θ > 0. By constructing the priors for θ under H1 and H2377

as a truncation of an unconstrained prior that is centered around the focal378

point 0, the prior distribution for θ under both hypotheses are essentially379

equivalent; the only difference is the sign. Furthermore, by centering the380

prior at 0 it is assumed that small effects are more likely a priori than large381

effects, which is often the case in practice. A more detailed discussion on382

centering prior means can be found in Mulder (2014b). In this paper, we383

adjust the prior in (22) as follows:384

π∗u(θ|Xb) = N(θ∗, Σ̂θ/b), (23)

where the adjusted prior mean is given by θ∗ ∈ Θ∗i = {θ|Ri0θ = ri0 ,Ri1θ =385

ri1}. For each informative hypothesis, one can define a parameter space Θ∗i386

which contains one or more θ∗. For example, H1 : θ1 > 2θ2 > 4 results in387

θ∗ = (4, 2)T , and H2 : θ1 = θ2 results in θ∗ ∈ Θ∗i = {θ1, θ2|θ1 = θ2} in388

which θ∗1 = θ∗2 can be any value. It should be noted that the prior mean for389

parameters in a range constrained hypothesis is suggested being centered in390

the middle of the range space (Mulder, Hoijtink, & de Leeuw, 2012), because391

a range constraint basically implies an approximate equality, which, in terms392
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of a restriction for the prior mean becomes an equality. For example, the393

range constraint −0.2 < θ < 0.2 corresponds with the approximate equality394

θ ≈ 0 with maximal deviation of 0.2. Thus, the focal point is 0, and therefore395

we set the prior mean to θ∗ = 0. Below we will deal with the choice of θ∗.396

The prior distribution proposed in (23) depends on the informative hy-397

pothesis under evaluation, because the prior mean θ∗ is located on the bound-398

ary of the constrained region of the informative hypothesis. When two or399

more informative hypotheses are under comparison, the intersection of their400

constrained regions must be nonempty so that a common unconstrained401

prior mean θ∗ exists to evaluate all informative hypotheses against the un-402

constrained hypothesis. A set of informative hypotheses Hi for i = 1, . . . , I403

are comparable if there exists at least one solution of θ to the set of equations404

(Mulder et al., 2010):405 [
R10

R11

]
θ =

[
r10

r11

]
, . . . ,

[
RI0

RI1

]
θ =

[
rI0
rI1

]
. (24)

The solution of θ for these equations defines the parameter space Θ∗. Ex-406

amples for comparable hypotheses are H1 : θ = 0 versus H2 : θ > 0 and407

H3 : θ1 > θ2 > θ3 versus H4 : θ3 > θ2 > θ1. Hypotheses H5 : θ1 = θ2 versus408

H6 : θ1 > θ2 +1 are not comparable because there is no solution of θ1 and θ2409

for equations θ1 = θ2 and θ1 = θ2 +1. It should be noted that the hypothesis410

H7 : θ1 > 0, θ2 > 0, θ2 > θ1 − 1 cannot be properly evaluated yet because a411

solution does not exist for equations θ1 = 0, θ2 = 0, and θ2 = θ1 − 1.412

Adjusting the prior mean from θ̂ to θ∗ results in a slight change of the pos-413

terior for θ. In particular, the posterior mean of θ̂ would be slightly shifted414

towards the prior mean θ∗. Large sample theory however dictates that the415

prior has a negligible effect on the posterior for large samples. Therefore, we416

leave the approximated posterior for θ, given by N(θ̂, Σ̂θ), unaltered. Note417

that a similar argument is used in the BIC approximation of the Bayes factor418

(Schwarz, 1978; Kass & Raftery, 1995).419

Based on the adjusted fractional prior distribution (23) and the pos-420

terior distribution (21), the approximated adjusted fractional Bayes factor421

(AAFBF) for an informative hypothesis versus the unconstrained hypothesis422

can be defined as:423

AAFBFiu =

∫
θ∈Θi

πu(θ|X)dθ∫
θ∈Θi

π∗u(θ|Xb)dθ
, (25)

where the parameter space Θi = {θ|Ri0θ = ri0 ,Ri1θ > ri1} is in agreement424

with the informative hypothesis Hi. The computation of the AAFBF will425

be elaborated in Section 3.4.426
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3.4 Bayes factor computation427

This section presents the computation of the AAFBF. First of all, we need428

to determine the adjusted prior mean θ∗ in (23). Finding the parameter429

space Θ∗i can be difficult for complicated informative hypotheses (Mulder430

et al., 2012). However, if we transform the parameters of interest using431

β0 = Ri0θ − ri0 and β1 = Ri1θ − ri1 , then the informative hypothesis432

under consideration becomes Hi : β0 = 0,β1 > 0 such that we can simply433

specify the prior mean vector equal to zero for the new parameter vector434

β = (βT0 ,β
T
1 )T . Note that the range constrained hypothesis, e.g., H1 : 0 <435

θ < 1, is an exception because as elaborated earlier the prior mean for θ is436

centered as θ∗ = 0.5 which requires β∗11 = θ∗ = 0.5 and β∗12 = 1 − θ∗ = 0.5.437

The specification of the prior mean for range constraints is elaborated in438

Appendix A. This parameter transformation was also used in Mulder (2016)439

for hypotheses with only inequality constraints on correlations. Here we440

generalize it to equality and inequality constraints on parameters in general441

statistical models. The parameter transformation of θ to β simplifies the442

form of the hypothesis without changing the expectation of researchers. For443

instance, testing whether two parameters are equal θ1 = θ2 is identical to444

testing whether their difference is 0, i.e., β0 = θ1 − θ2 = 0. Consequently,445

the adjusted fractional prior distribution and posterior distribution for the446

new parameter β are given by:447

π∗u(β|Xb) = N(0, Σ̂β/b) (26)

and448

πu(β|X) = N(β̂, Σ̂β), (27)

respectively, where β̂ = Rθ̂ − r and Σ̂β = RΣ̂θR
T with R = (RT

i0 ,R
T
i1)T449

and r = (rTi0 , r
T
i1

)T . Specifically, β̂ = (β̂
T

0 , β̂
T

1 )T where β̂0 = Ri0 θ̂ − ri0450

and β̂1 = Ri1 θ̂− ri1 , and Σ̂β =

[
Σ̂β0 Σ̂01

Σ̂10 Σ̂β1

]
where Σ̂β0 = Ri0Σ̂θR

T
i0 and451

Σ̂β1 = Ri1Σ̂θR
T
i1 .452

This parameter transformation from θ to β simplifies the computation453

of the AAFBF. First, the AAFBF for an informative hypothesis with only454

equality constraints, i.e., Hi : β0 = 0, compared to the unconstrained hy-455

pothesis can be obtained using the Savage-Dickey density ratio (Dickey, 1971;456

Wagenmakers, Lodewyckx, Kuriyal, & Grasman, 2010; Mulder, 2014b):457

AAFBF 0
iu =

πu(β0 = 0|X)

π∗u(β0 = 0|Xb)
, (28)
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where π∗u(β0 = 0|Xb) and πu(β0 = 0|X) are the densities of the prior458

(26) and posterior (27), respectively, for β0 at the point β0 = 0 under459

Hu. Second, the AAFBF for an informative hypothesis with only inequality460

constraints, i.e., Hi : β1 > 0, compared to the unconstrained hypothesis is461

given by (Hoijtink, 2012; Mulder, 2014b):462

AAFBF 1
iu =

∫
β1>0 πu(β1|X)dβ1∫
β1>0 π

∗
u(β1|Xb)dβ1

, (29)

where π∗u(β1|Xb) and πu(β1|X) are the prior (26) and posterior (27), re-463

spectively, for β1. Finally, the AAFBF for an informative hypothesis with464

both equality and inequality constraints, i.e., Hi : β0 = 0,β1 > 0, compared465

to the unconstrained hypothesis can be obtained via:466

AAFBFiu =
πu(β0 = 0|X)

π∗u(β0 = 0|Xb)
·

∫
β1>0 πu(β1|β0 = 0,X)dβ1∫
β1>0 π

∗
u(β1|β0 = 0,Xb)dβ1

, (30)

where π∗u(β1|β0 = 0,Xb) and πu(β1|β0 = 0,X) are the prior and poste-467

rior distributions of β1 given β0 = 0, respectively. Note that π∗u(β1|β0 =468

0,Xb) = N(0, (Σ̂β1 − Σ̂10Σ̂
−1
β0 Σ̂01)/b) and πu(β1|β0 = 0,X) = N(β̂1 −469

Σ̂10Σ̂
−1
β0 β̂0, Σ̂β1 − Σ̂10Σ̂

−1
β0 Σ̂01).470

We let c0
i = π∗u(β0 = 0|Xb) and c1

i =
∫
β1>0 π

∗
u(β1|Xb)dβ1, which can471

be interpreted as the relative complexities of equality constrained hypothesis472

and inequality constrained hypothesis, respectively, compared to Hu under473

prior (26). Then, in general474

ci = π∗u(β0 = 0|Xb) ·
∫
β1>0

π∗u(β1|β0 = 0,Xb)dβ1 (31)

represents the relative complexity of informative hypothesis Hi (Hoijtink,475

2012; Mulder, 2014a), which is a relative measure of the size of the parameter476

space under an informative hypothesis in comparison to the unconstrained477

parameter space. For example, the relative complexity of "θ1 > θ2, and θ3478

unconstrained" is larger than the relative complexity of "θ1 > θ2 > θ3". This479

can be understood from the fact that the parameter space of the latter is a480

subset of the parameter space of the first. Similarly, the relative complexity481

of "θ1 = 0, θ2 unconstrained" is larger than the relative complexity of "θ1 =482

0, θ2 = 0". It is interesting to note that the relative complexity c0
i of an483

equality constrained hypothesis Hi : β = 0 becomes smaller when the prior484

variance of β under Hu becomes larger. The reason is that a larger variance485
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of the unconstrained prior implies that a larger region of the unconstrained486

parameter space is likely a priori, which means that Hi is simpler relative487

to the unconstrained hypothesis. Furthermore, we let f0
i = πu(β0 = 0|X)488

and f1
i =

∫
β1>0 πu(β1|X)dβ1, which can be interpreted as the measures of489

relative fit of the equality constrained hypothesis and inequality constrained490

hypothesis, respectively, compared to Hu. Then,491

fi = πu(β0 = 0|X) ·
∫
β1>0

πu(β1|β0 = 0,X)dβ1 (32)

expresses the relative fit of Hi (Hoijtink, 2012; Mulder, 2014a), which im-492

plies how well a hypothesis is supported by the data compared to the uncon-493

strained hypothesis. The relative complexity and fit in the AAFBF can be494

estimated based on a similar procedure presented in Gu et al. (2014) which495

only considers inequality constraints. We generalize the method to hypothe-496

ses with inequality as well as equality constraints to cover a considerably497

large spectrum of informative hypotheses that can be tested.498

The computation of the AAFBF is implemented in the software package499

BaIn (Bayesian evaluation of informative hypotheses) available at http://500

informative-hypotheses.sites.uu.nl/software/. A user manual for BaIn501

is given in Appendix B. The input of BaIn needs the maximum likelihood502

estimate and covariance matrix of the parameters of interest, which can be503

obtained using other software packages such as Mplus (Muthén & Muthén,504

2010) or the free R-package lavaan (Rosseel, 2012). Executing BaIn renders505

the AAFBF for each informative hypothesis Hi under evaluation.506

The Bayes factor of an informative hypothesis Hi against its complement507

Hic is508

AAFBFiic =
fi
ci
/

1− fi
1− ci

, (33)

ifHi does not contain equality constraints. OtherwiseAAFBFiic = AAFBFiu509

because the marginal likelihood of the complement of a hypothesis which510

contains equality constraints is equal to the marginal likelihood of the un-511

constrained hypothesis. For the comparison of two informative hypotheses512

Hi and Hi′ , the AAFBF for Hi against Hi′ can be obtained by513

AAFBFii′ = AAFBFiu/AAFBFi′u. (34)

Running BaIn for Hi and Hi′ renders AAFBFiu and AAFBFi′u such that514

AAFBFii′ can be computed using (34).515
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4 Choices for b516

This section discusses the choices of the fraction b for the specification of517

fractional priors. We first show the influence of the choices of b on the518

AAFBF when evaluating informative hypotheses because, as with the origi-519

nal fractional Bayes factor (Conligliani & O’Hagan, 2000), the choice of the520

fraction b also plays a crucial in the AAFBF. Thereafter, two traditional521

choices and one novel choice of b are presented. At the end of this section, a522

sensitivity study is conducted to investigate the approximation error of the523

AAFBF relative to the actual adjusted fractional Bayes factor. It should be524

noted that this paper uses one common fraction b of the likelihood for prior525

specification. For this reason the AAFBF should only be used for testing526

hypotheses based on data that come from one population or balanced data527

with equal group sizes in the case of multiple populations, similar as the528

fractional Bayes factor (de Santis & Spezzaferri, 2001).529

4.1 The role of b in AAFBF530

The influence of fraction b on the AAFBF is different for the evaluation531

of equality constraints Ri0θ = ri0 and for the evaluation of inequality con-532

straints Ri1θ > ri1 . First of all, the fraction b is a very influential parameter533

when evaluating equality constraints Ri0θ = ri0 . The underlying reason is534

that a small (large) b implies a prior with large (small) variance such that the535

prior density evaluated at Ri0θ = ri0 or β0 = 0 in (28) is small (large). This536

can be illustrated in Figure 1 in which the solid line represents the density537

of prior distribution π∗u(θ|xb) = N(0, σ2
θ/b) with σ2

θ = 0.02 under b = 0.05538

(a) and b = 0.2 (b). As can be seen, when testing hypothesis H1 : θ = 0539

vs Hu, the prior density at θ = 0 is 0.63 under b = 0.05 in Figure 1 (a),540

which is two times smaller than 1.26 under b = 0.2 in Figure 1 (b). Given an541

estimate of θ̂ = 0.2 the resulting AAFBF for H1 against Hu under b = 0.05 is542

AAFBF1u = 1.64, whereas the AAFBF under b = 0.2 is AAFBF1u = 0.82543

according to equation (28).544

Secondly, for range constrained hypotheses the effect of b is similar as545

for an equality constrained hypothesis, i.e., a small (large) b implies a large546

(small) AAFBF for the range constrained hypothesis against the uncon-547

strained hypothesis. For example, the area with the shaded lines in Figure 1548

represents the prior probability in line with the range constrained hypothesis549

H2 : −0.5 < θ < 0.5 which implies that the absolute effect is expected to be550

smaller than 0.5. For a small b = 0.05 the prior probability of −0.5 < θ < 0.5551

shown in Figure 1 (a) is 0.57, whereas for a large b = 0.2 the prior probability552
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Figure 1: Relative complexities under different b
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in Figure 1 (b) is 0.89. Based on θ̂ = 0.2 and equation (29) the AAFBF for553

H2 against Hu under b = 0.05 is AAFBF2u = 1.72, which is different from554

AAFBF2u = 1.11 under b = 0.2.555

Thirdly, the AAFBF is independent of the choice of b for inequality con-556

strained hypotheses which do not contain range constraints. This property557

was proven in Mulder (2014b) and can also be seen in Figure 1 where the558

prior probability that the constraint of H3 : θ > 0 holds under Hu is equal559

to 0.5 for both choices of b.560

The influence of b on AAFBF is illustrated in Figure 2 when compar-561

ing the equality constrained hypothesis H1 : θ = 0, the range constrained562

hypothesis H2 : −0.5 < θ < 0.5, and the inequality constrained hypothesis563

H3 : θ > 0, to the unconstrained hypothesis Hu. Given the estimate θ̂ = 0.2564

and variance σ̂2
θ = 0.02 for θ, Figure 2 shows the AAFBF for each infor-565

mative hypothesis under various b ∈ (0, 0.5]. As can be seen, the AAFBF566

for H1 decreases as b increases, the AAFBF for H2 behaves similarly as for567

H1, and the AAFBF for H3 is stable as b changes. This illustrates that the568

fraction b has to be carefully specified when equality constrained hypotheses569

and range constrained hypotheses are of interest by the researcher, while any570

fraction b can be used when only inequality constrained hypotheses without571

range constraints are formulated by the user. In what follows we will specify572

b in three different ways.573

4.2 Traditional choices for b574

Previous studies have recommended two choices for b for the fractional Bayes575

factor. The first one comes from Berger and Pericchi (1996) and O’Hagan576

(1995) who suggested using the minimal training sample for prior specifica-577

tion to leave maximal information in the data for hypothesis testing. This578

corresponds to b = m/n in the fractional prior, wherem is the size of the min-579

imal training sample that makes all parameters identifiable. For example, for580

the one sample t test ofH0 : θ = 0 where data is xi ∼ N(θ, σ2), the actual ad-581

justed fractional prior distribution for θ is π∗u(θ|xb) = t(0, s2/(nb−1), nb−1),582

i.e., a Student t density with mean 0, scale parameter s2/(nb−1), and degree583

of freedom nb− 1. In this case, the minimal m is 2 because m = 1 results in584

b = 1/n and a degree of freedom 0, which is not allowed.585

For the AAFBF we propose a similar approach to determine our first586

choice of b. To estimate β (with length J) we need at least J+1 observations.587

Therefore, our first choice of the fraction equals588

bmin = (J + 1)/n, (35)
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where J is the number of independent constraints in all the informative hy-589

potheses under investigation, i.e., J equals the rank ofR = (RT
10 ,R

T
11 , . . . ,R

T
I0 ,R

T
I1)T590

for a set of informative hypotheses Hi for i = 1, . . . , I. Thus, if H3 : θ1 = 0591

and H4 : θ1 > 0, θ2 > 0 are under evaluation, for example, J = 2 when592

computing the AAFBF for each informative hypothesis against the uncon-593

strained hypothesis because there are two independent constraints.594

For the multiple regression model (5) in Section 2, J = 3 because H1 :595

θ1 > 0, θ2 < 0, θ3 = 0 can be formulated using a vector β of length 3. With596

the sample size of n = 50, the first choice of the fraction b can be set as597

bmin = 2/25. For the repeated measures model (10), J = 3 based on a598

vector β of length 3 in H2 : θ1 = θ2 > θ3 = θ4 and H2′ : θ1 > θ2 > θ3 > θ4,599

and therefore bmin = 1/9 based on sample size n = 36.600

The second way of choosing b is (O’Hagan, 1995):601

brobust = max {(J + 1)/n, 1/
√
n}, (36)

which is in general larger than the first choice. O’Hagan (1995) stated that602

a larger b can reduce the sensitivity of the fractional Bayes factor to the603

distributional form of the prior. Conligliani and O’Hagan (2000) further604

derived a measure of the sensitivity of the fractional Bayes factor and proved605

that this measure is a decreasing function of the fraction b. The second606

choice of b can also be applied to the AAFBF defined in (25). When setting a607
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larger fraction b, the AAFBF becomes more similar to the non-approximated608

adjusted fractional Bayes factor. Thus, the AAFBF is less sensitive to the609

prior distribution given larger b. We will elaborate more on this topic in610

Section 4.4. Given the sample size of n = 50 in the regression model in611

Section 2, brobust = 1/
√

50 is specified to evaluate hypothesis H1. In the612

case of the repeated measures model with sample size n = 36, one can set613

brobust = 1/6 for the comparison of H2 and H2′ .614

4.3 A frequentist choice for b615

Gu et al. (2016) recently proposes another method of specifying b by tak-616

ing into account the frequentist error probabilities. In Bayesian hypothesis617

testing, the probability of a Bayes factor favouring Hu when Hi is true is618

p1 = P (BFiu < 1|Hi) (37)

which corresponds to the Type I error probability ifHi would be a traditional619

null hypothesis, and the probability of a Bayes factor favouring Hi when Hu620

is true is621

p2 = P (BFiu > 1|Hu). (38)

which then corresponds to the Type II error probability. Gu et al. (2016)622

found that these probabilities are often quite different when using traditional623

choices of b in the one sample t test. This may not be preferable from624

a frequentist point of view where the goal typically is to control the error625

probabilities. Here we show how to specify b to control the error probabilities626

under certain conditions. First, we shall use a one sample t test to illustrate627

the procedure for specifying b based on this method, and then apply it to the628

AAFBF (28) for general statistical models. In the end, a rule of choosing b629

is proposed.630

4.3.1 One sample t test631

Consider a one sample t test for which data come from xi ∼ N(θ, σ2), where632

θ denotes the population mean and σ2 denotes the population variance, and633

the hypotheses under consideration are H1 : θ = 0 against Hu : θ. The634

AAFBF for H1 against Hu can be derived using equation (28):635

AAFBF1u = b−1/2 exp (−1

2
n(x̄/s)2), (39)
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where x̄ =
∑n

i=1 xi/n and s =
√

1
n

∑n
i=1(xi − x̄)2. For this AAFBF the636

error probabilities (37) and (38) become637

p1 = P (AAFBF1u < 1|H1) = P (| x̄
s
| >

√
− log b/n | H1)

≈ 1

L

L∑
l=1

I(| x̄
(1l)

s(1l)
| >

√
− log b/n) (40)

and638

p2 = P (AAFBF1u > 1|Hu) = P (| x̄
s
| <

√
− log b/n | Hu)

≈ 1

L

L∑
l=1

I(| x̄
(2l)

s(2l)
| >

√
− log b/n), (41)

where x̄(1l) and s(1l) for l = 1, . . . , L are the mean and standard deviation639

of data x(1l)
i sampled from H1, x̄(2l) and s(2l) are the mean and standard640

deviation of data x(2l)
i sampled from Hu, and I(·) is the indicator function641

which is 1 if the argument is true and 0 otherwise. When sampling data642

from Hu, an expected standardized effect size, denoted by βe, needs to be643

specified under Hu, i.e., Hu : θ = βeσ so that the scaled data is sampled from644

yi ∼ N(βe, 1) under Hu where yi = xi/σ. Note that sampling x̄(2l)

s(2l)
based on645

xi ∼ N(θ, σ2) where θ/σ = βe is identical to sampling the mean ȳ(2l) based646

on yi ∼ N(βe, 1). The specification of the standardized effect size βe will be647

discussed in Section 4.3.3.648

In the one sample t test, x̄s is the observed standardized effect size known649

as Cohen’s d (Cohen, 1992). It has sampling distributions under H1 and Hu650

which can be obtained using x̄(1l)

s(1l)
and x̄(2l)

s(2l)
, respectively. Figure 3 shows the651

distributions of x̄s under H1 : θ = 0 (solid line) and Hu : θ = βe (dashed line)652

given σ2 = 1 and n = 20, where βe = 0.5 is the pre-specified standardized653

effect size under Hu. Note that according to Cohen (1992) βe = .2, .5, and654

.8 correspond to the small, medium, and large effects, respectively. If we655

use bmin = 2/n for the one sample t test, the error probabilities in (40) and656

(41) become p1 = P (| x̄s | > 0.34|H1) = 0.073 and p2 = P (| x̄s | < 0.34|Hu) =657

0.241, whereas if we specify brobust = 1/
√
n, the error probabilities are p1 =658

P (| x̄s | > 0.27|H1) = 0.122 and p2 = P (| x̄s | < 0.27|Hu) = 0.159. These error659

probabilities are marked in Figure 3 (a) for bmin and (b) for brobust, where660

the dark grey area represents p1 and the light grey area represents p2. As661

can be seen, p1 < p2 under both bmin and brobust, which means that we are662
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more likely to incorrectly prefer H1 when Hu is true than incorrectly prefer663

Hu when H1 is true.664

In order to correct for this, Gu et al. (2016) showed how to choose b665

such that p1 = p2 given sample size n and effect size βe under Hu. A direct666

way of obtaining such a b is proposed by Morey, Wagenmakers, and Rouder667

(2016) and illustrated in Figure 3 (c). As can be seen in Figure 3 (c), the668

distributions of x̄s under H1 : θ = 0 and Hu : θ = βe are symmetric on βe/2.669

This implies that we can simply specify
√
− log b/n = βe/2 or equivalently670

b = exp (−nβ2
e/4) to attain equal error probabilities, because p1 = P (| x̄s | >671

βe/2|H1) is equal to p2 = P (| x̄s | < βe/2|Hu). For example, given n = 20 and672

βe = 0.5 under Hu in Figure 3 (c), the dark grey area for p1 has the same673

size as the light grey area for p2 when setting b = exp (−nβ2
e/4) = 0.287.674

The error probabilities under this setting are p1 = p2 = 0.139.675

4.3.2 General case676

The method of choosing b based on equal error probabilities can be general-677

ized to the AAFBF of any Hi : β0 = 0 against Hu : β0 6= 0. Based on the678

adjusted fractional prior (26) and approximated posterior (27), the AAFBF679

in (28) is680

AAFBF 0
iu = b−1/2 exp (−1

2
β̂Σ̂
−1
β β̂

T
). (42)

It is interesting to note that
√
β̂Σ̂
−1
β β̂

T
in (42) is the test statistic in Wald681

test (Engle, 1984) which assumes that β is approximately normally dis-682

tributed. The test statistic is not only the cornerstone in frequentist hypoth-683

esis testing, but it is also important in default Bayes factors. For example,684

the Bayes factor proposed by Rouder et al. (2009) for the t test is a func-685

tion of t statistic, and the Bayes factor based on Zellner’s g prior (Zellner686

& Siow, 1980) in regression models is a function of F statistic. The stan-687

dardized effect size is often defined as a test statistic divided by
√
n to offset688

the influence of the sample size (Cohen, 1992), because the effect size should689

not be affected by the sample size as it expresses the degree to which Hu690

differs from Hi. Thus, the observed standardized effect size in this case can691

be defined as692

β̂e =

√
β̂Σ̂
−1
β β̂

T
/n. (43)

Then using the steps as in (40) and (41) for the one sample t test, the error693

probabilities of AAFBFs are defined as694

p1 = P (AAFBF 0
iu < 1|Hi) = P (β̂e >

√
− log b/n|Hi) (44)
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Figure 3: Sampling distributions of observed effect size x̄/s in one sample t
test for n = 20 and βe = 0.5 under Hu.
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and695

p2 = P (AAFBF 0
iu > 1|Hu) = P (β̂e <

√
− log b/n|Hu). (45)

The observed standardized effect size β̂e is usually within the interval696

[0, 1] for equality constrained hypothesis testing, because β̂e can be inter-697

preted analogously as the Cohen’s d or Cohen’s f2 (Cohen, 1992), which698

rarely exceeds 1. First, for a one sample t test xi ∼ N(θ, σ2), and H1 : θ = 0699

versus Hu : θ, the maximum likelihood estimate of β = θ is β̂ = x̄ and the700

standard deviation is σ̂β = s/
√
n. Then the observed standardized effect size701

(43) becomes β̂e = β̂
σ̂β
/
√
n = x̄

s which is the same as Cohen’s d. Second, we702

consider the F test of H2 : θ1 = 0 versus Hu : θ1 in a simple linear regression703

model yi = θ0 + θ1xi + εi, where θ0 is the intercept, θ1 is the regression coef-704

ficient, and εi ∼ N(0, σ2) is the residual. The maximum likelihood estimate705

of β = θ1 is β̂ = rxy
sy
sx

and the standard deviation is σ̂β = σ
sx
/
√
n, where sx706

and sy are the standard derivations of xi and yi, and rxy is the correlation707

coefficient between xi and yi. Note that r2
xy is equal to the coefficient of deter-708

mination R2 in the case of the simple linear regression model. Thus, because709

the coefficient of determination is equal to R2 = 1−σ2/s2
y, the observed stan-710

dardized effect size in (43) becomes β̂e = β̂
σ̂β
/
√
n = rxy

sy
σ =

√
R2

1−R2 , which711

is the square root of Cohen’s f2 = R2

1−R2 .712

Analogous to the effect size x̄/s in the one sample t test, the observed713

standardized effect size β̂e also has sampling distributions under Hi and Hu,714

which are symmetric around half of the pre-specified standardized effect size715

βe under Hu. Therefore, by setting
√
− log b/n = βe/2 or equally716

b = exp (−nβ2
e/4), (46)

the test for Hi against Hu using AAFBF has equal error probability:717

p1 = P (β̂e > βe/2|Hi) = P (β̂e < βe/2|Hu) = p2. (47)

How to specify βe in (46) will be discussed in the next subsection.718

4.3.3 A new rule of choosing b719

Before presenting the new choice of b based on equal error probabilities, we720

need to deal with two issues: the range of b for consistent Bayes factors and721

the specification of standardized effect size βe under Hu. The consistency722

of the Bayes factor is an important property in Bayesian hypothesis testing.723

The Bayes factor for Hi : β = 0 against Hu : β 6= 0 is consistent if it goes to724

infinity as sample size goes to infinity when Hi is true, and goes to 0 when725
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Hu is true. Morey et al. (2016) found that the prior specification based on726

frequentist error probabilities may result in inconsistent Bayes factors. Gu et727

al. (2016) showed how to resolve this by restricting the fraction b according728

to b ≥ 2/n in the one sample t test. As stated earlier in Section 4.2, b =729

(J + 1)/n is based on the minimal number of observations to specify proper730

priors, and therefore we will always constrain b ≥ (J + 1)/n in the AAFBF.731

Furthermore, we also suggest constraining b ≤ 1/2 because b > 1/2 implies732

that more than half of the likelihood is used for prior specification, which is733

undesirable in Bayesian tests (Berger & Pericchi, 1996). Consequently, the734

range of the fraction b is set as b ∈ [(J + 1)/n, 1/2].735

To obtain the fraction b in (46) for equal error probabilities, the stan-736

dardized effect size βe under Hu has to be specified. Given any specific βe, a737

fraction b in (46) can be obtained such that p1 = p2. However, in practice βe738

is unknown. Therefore, a distribution for βe is specified that covers a range739

of realistic effect sizes, i.e., βe ∈ [0, 1] as elaborated before. Here we consider740

a uniform distribution π∗(βe) = U(0, 1) in which every effect size from small741

to large is equally likely within the interval [0, 1] (Gu et al., 2016). Note742

that this choice for b would be the same as when using π∗(βe) = U(−1, 1)743

because the choice of b is independent of the sign of the effect.744

Based on the distribution of effects π∗(βe) = U(0, 1), the third choice of745

fraction b for equal error probabilities is given by:746

bfreq = Eπ∗(βe)[exp (−nβ2
e/4)] =

∫ 1

0
exp (−nβ2

e/4)dβe. (48)

The integration in (48) can be numerically calculated (see Gu et al., 2016).747

Although bfreq cannot always achieve equal error probabilities as we con-748

strain b ∈ [(J + 1)/n, 1/2] and specify π∗(βe) = U(0, 1), Gu et al. (2016)749

show that this choice results in error probabilities that are often about equal750

for the one sample t test. It was shown that the difference between the type751

I and type II error probabilities was typically smaller for this choice than752

when using the more traditional choices for b. We recommend the choice753

bfreq when the sample size is small, because in this case the error probabil-754

ities p1 and p2 are relatively large and difference between p1 and p2 can be755

quite severe. In the following subsection, we will discuss the sensitivity of756

AAFBF based on different choices of b.757

4.4 Sensitivity to prior distributions758

In Section 3, we specified the normal prior (26) for β in general statistical759

models. However, the adjusted fractional prior for the parameters in a spe-760
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cific model is often not normally distributed. Thus, when using a normal761

approximation of the fractional prior, as in the case of the AAFBF, we may762

misspecify the prior distribution for the parameters of interest. For exam-763

ple, if the parameter is a probability which is bounded in [0, 1] in a binomial764

model, the (implicit) fractional prior would have a beta distribution. There-765

fore the use of the AAFBF, where the fractional prior is approximated using766

a normal distribution, may be different from the non-approximated adjusted767

fractional Bayes factor. Thus, it is useful to investigate the sensitivity of the768

AAFBF when the fractional prior is far from normally distributed.769

O’Hagan (1995) argued that the sensitivity of the fractional Bayes factor770

depends on the magnitude of the fraction b. This dependence was proven771

by Conligliani and O’Hagan (2000). Increasing b reduces the sensitivity772

to the distributional form of the fractional prior. This is also the case for773

the adjusted fractional Bayes factor (AFBF) of Mulder (2014b), because a774

larger fraction b implies that more information in the data is used for prior775

specification, which makes the distribution of the adjusted fractional prior776

in the AFBF more similar to a normal distribution. This section will use777

two simple examples to illustrate how much difference there is between the778

AAFBF using the normal prior and the AFBF using the actual fractional779

prior. Furthermore it is shown that the AAFBF based on the different780

fractions show consistent behavior. In these examples, we will only focus on781

equality constrained hypotheses because, as elaborated earlier, the AFBF782

for inequality constrained hypotheses is independent of the fraction b.783

The first example again concerns the one sample t test, where data come784

from xi ∼ N(θ, σ2) with unknown mean and variance, and the hypotheses785

under consideration are H1 : θ = 0 against Hu : θ. In the AAFBF, the786

default prior (26) for β = θ is π∗u(β|Xb) = N(0, s2/nb), while the actual787

adjusted fractional prior for a normal mean has a t distribution π∗u(β|Xb) =788

t(0, s2/(nb− 1), nb− 1) with mean of 0, variance of s2/(nb− 1), and degrees789

of freedom of nb− 1. It is well known that the t distribution has heavier tail790

than the normal distribution such that the density at the mode β = 0 from791

the normal distribution is larger than the density from the t distribution.792

Furthermore, as the fraction b increases, the degrees of freedom nb−1 increase793

such that the t distribution t(0, s2/(nb − 1), nb − 1) becomes more similar794

to the normal distribution N(0, s2/nb). This implies that for a larger b the795

AAFBF where the default prior has a normal distribution performs more796

similarly as the AFBF under the actual fractional prior. This is illustrated797

in Figure 4.798

Figure 4 shows the logarithms of AFBFs and AAFBFs for H1 versus Hu799

under different observed effect sizes x̄/s = 0, 0.1, 0.2, and different fractions800
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Figure 4: The logarithms of the AFBF with a Student t prior (solid line)
and the AAFBF with a normal prior (dashed line). The dark, red, and green
lines correspond to the logarithms of Bayes factors under observed effect sizes
x̄/s = 0, 0.1, and 0.2, respectively.
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bmin, brobust, and bfreq. The sample size n varies from 10 to 500. First,801

as can be seen in Figure 4 (a), based on bmin the logarithms of AAFBFs802

under the normal prior distribution (dashed line) differ substantially from803

the logarithms of AFBFs under the t prior distribution (solid line). This804

difference does not decrease as n increases because when setting bmin = 2/n805

the degree of freedom in the t distribution is 1, which is independent of n.806

This suggests high sensitivity to the functional form of the prior distribution.807

Second, Figure 4 (b) shows that based on brobust there is not much differ-808

ence between the logarithms of AAFBFs and AFBFs. This implies that the809

choice of brobust results in less sensitivity to the functional form of the prior810

distribution than bmin. Third, Figure 4 (c) demonstrates the logarithms of811

AAFBFs and AFBFs under bfreq. As can be seen, with bfreq there is no812

sensitivity either.813

It is interesting to note that Figure 4 also illustrates the consistency814

of AAFBFs. The consistency in this example requires that as sample size815

goes to infinity the AAFBF for H1 against Hu approaches to infinity when816

the observed effect size is equal to 0 and the AAFBF goes to zero when817

the observed effect size is unequal to 0. As can be seen in Figure 4, for818

an observed effect size x̄/s = 0 the logarithm of the AAFBF (black lines)819

in each figure goes to infinity as sample size n increases. Conversely, the820

logarithms of the AAFBF based on an observed effect size of x̄/s = 0.1 (red821

lines) and x̄/s = 0.2 (blue lines) diverge to minus infinity, which implies822

decisive evidence for the true unconstrained hypothesis as the sample size823

goes to infinity.824

Next, we consider a binomial model, where data come from x ∼ Bin(n, p).825

The hypotheses under evaluation are H2 : p = 0.4 against Hu : 0 ≤ p ≤ 1.826

Since H2 is nested in Hu, we can use the AAFBF (28) to evaluate H2 against827

Hu. Given data x ∼ Bin(n, p), the estimate of β = p− 0.4 is β̂ = x/n− 0.4828

and the variance is σ̂2
β = x(n−x)

n2(n+1)
, and therefore the normal adjusted frac-829

tional prior (26) is π∗u(β|Xb) = N(0, bx(n−x)
n2(n+1)

). On the other hand, following830

the idea of adjusted fractional Bayes factors the fractional prior has a beta831

distribution, i.e., p = β + 0.4 ∼ Beta(0.4nb, 0.6nb) which has a mean of 0.4832

and thus β has a prior mean of 0. Note that this prior is centered on the833

focal point of 0.4 in H2.834

Figure 5 draws the lines of the logarithms of the AFBFs and AAFBFs835

for H2 against Hu as the sample size n increases from 10 to 500. The836

observed data are x = 0.4n, 0.5n, 0.6n. As can be seen in Figure 5 there837

is a considerable smaller approximation error of the AAFBF with respect838

to the AFBF in comparison to the first example in Figure 4. Again, the839
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Figure 5: The logarithms of the AFBF with a Beta prior (solid line) and the
AAFBF with a normal prior (dashed line). The dark, red, and green lines
correspond to the logarithms of Bayes factors under observed effect sizes
x̄/s = 0.4n, 0.5n, and 0.6n, respectively.
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difference is largest for bmin because this fraction is always smaller than840

brobust and bfreq. Finally note that the AAFBFs show consistent behavior841

for this testing problem.842

These two examples include the evaluation of equality constrained hy-843

potheses in both continuous data and discrete data. Although the models844

used are simple, the results of the sensitivity study of adjusted fractional845

Bayes factors can be applied in the multivariate normal model where the846

parameters (e.g., the group means in ANOVA model, the coefficients in re-847

gression model) have a multivariate t distribution, and in multinomial model848

where the parameters (e.g., the probabilities in Contingency Tables) have a849

Dirichlet distribution which is the multivariate generalization of the Beta850

distribution. Furthermore, in more complicated settings such as structural851

equation models and generalized linear models, it can be anticipated that the852

larger b will result in less sensitive AFBFs because this implies that more data853

are used to specify the fractional prior such that the normal approximation854

to the prior has better performance based on the large sample theory.855

Based on the discussion in this section, we propose the following scheme856

for specifying the fraction b in the AAFBF.857

• Choose bmin = (J + 1)/n to have a default prior that is based on the858

idea of a minimal training sample.859

• Choose brobust = max {(J + 1)/n,
√
n/n} to ensure that the default860

prior is close to normal.861

• Choose bfreq =
∫ 1

0 exp (−nβ2
e/4)dβe to control the frequentist error862

probabilities when testing an equality constrained hypothesis against863

the unconstrained alternative.864

Note that n and J denote the sample size and the number of independent865

constraints for all the informative hypotheses, respectively.866

5 Results for empirical examples867

The examples introduced in Section 2 are revisited to illustrate how the868

AAFBF can be used to evaluate informative hypotheses. In the regression869

model, three parameters with respect to the regression coefficients are con-870

sidered in the informative hypothesis H1 : θ1 > 0, θ2 < 0, θ3 = 0. The first871

step is to specify the prior and posterior distributions in (26) and (27), which872

needs the estimates θ̂ and covariance matrix Σ̂θ of the parameters. These873

can be obtained by analyzing the regression model with the data in Table 1874
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Table 3: Result for regression model example
bmin = 0.080 brobust = 0.141 bfreq = 0.216

AAFBF11c 6.04 4.46 3.55

using a number of statistical software (packages), such as Mplus (Muthén &875

Muthén, 2010) and R package lavaan (Rosseel, 2012). Note that we do not876

need to standardize the three coefficients as they are compared with zero.877

The analysis of data in lavaan renders the maximum likelihood estimates of878

the parameters, i.e., θ̂1 = 11.01, θ̂2 = −2.85, θ̂3 = −2.03, and the covariance879

matrix:880

Σ̂θ =

 18.236 −0.500 2.812
−0.500 0.043 −0.004
2.812 −0.004 4.481

 .
To obtain the AAFBF for H1 against H1c , the fraction b has to be speci-881

fied. Based on the sample size of n = 50 and the length of vector β of J = 3 in882

this example, the three choices of fraction are bmin = 0.080, brobust = 0.141,883

and bfreq = 0.216. Running BaIn with the estimates and covariance matrix884

of parameters of interest renders the AAFBF displayed in Table 3. As can be885

seen, AAFBF11c is larger than 3 under each choice of b, which implies posi-886

tive evidence in the data for H1 against H1c according to Kass and Raftery887

(1995)’s rule.888

The hypotheses in the repeated measures ANOVA model consists of four889

parameters of which the estimates are θ̂1 = 22.33, θ̂2 = 22, θ̂3 = 5.78 and890

θ̂4 = 6.78, and the covariance matrix is891

Σ̂θ =


5.18 4.86 2.61 2.86
4.86 5.13 2.90 3.03
2.61 2.90 1.93 1.97
2.86 3.03 1.97 2.39

 .
Given sample size n = 36 and length of vector β of J = 3, three choices892

of b are automatically specified in BaIn as bmin = 0.111, brobust = 0.167,893

Table 4: Result for repeated measures ANOVA example
bmin = 0.111 brobust = 0.167 bfreq = 0.255

AAFBF2u 4.60 3.07 2.01
AAFBF2′u 0.24 0.24 0.24
AAFBF22′ 19.2 12.8 8.38
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and bfreq = 0.255. Based on these specification BaIn renders the AAFBFs894

AAFBF2u for H2 versus Hu and AAFBF2′u for H2′ versus Hu. The results895

are shown in Table 4. As can be seen, AAFBF2′u is independent of b because896

the AAFBF for inequality constrained hypotheses is invariant to the choice897

of the fraction b. Thereafter, the AAFBF AAFBF22′ for H2 versus H2′ can898

be computed by AAFBF2u/AAFBF2′u which is shown in the last row in899

Table 4. The result of AAFBF22′ in the last row suggests positive evidence900

in the data for H2 against H2′ .901

6 Conclusion902

This paper presented a new approximate Bayesian procedure for the eval-903

uation of informative hypotheses that can be used for virtually any model.904

The methodology is based on the prior adjusted default Bayes factor of905

Mulder (2014b). Furthermore, normal approximations were used to ensure906

fast computations. Numerical results showed that the approximation is close907

to the prior adjusted fractional Bayes factor. This implies that the proposed908

AAFBF provides an accurate quantification of the relative evidence between909

informative hypotheses. Furthermore, different choices were given for the910

fraction b, similar as in the fractional Bayes factor of O’Hagan (1995). The911

first choice relies on the concept of priors containing minimal information.912

The second choice uses a robustness argument resulting in a default prior913

distribution that is close to normal. The third choice is based on a frequency914

argument to control the classical error probabilities. The choice can be made915

by the user depending on the property which he/she finds most important.916

By computing the AAFBF for each choice of b we get a complete picture917

how much support there is in the data between two hypotheses when taking918

into account different philosophies.919

We provide a software package BaIn with a user manual in the Appendix920

B to evaluate the informative hypotheses which only needs the maximum921

likelihood estimates and covariance matrix of the parameters of interest, de-922

noted by θ in this paper. BaIn computes the AAFBF for an informative923

hypothesis against an unconstrained hypothesis. By computing these quan-924

tifies for each informative hypothesis against the unconstrained hypothesis,925

psychological researchers can straightforwardly compute the relative support926

in the data for pairs of informative hypotheses.927

The study in this paper contributes to the quantitative techniques in928

psychological research in three aspects. First, the proposed Bayesian test929

stimulates psychologists to translate scientific expectations to informative930

35



hypotheses that can be tested with the data in a direct manner. Second,931

the approximate Bayesian procedure allows psychologists to test their infor-932

mative hypotheses in virtually any statistical model. Third, the software933

package allows psychologists to apply the new methodology on their own934

data in an easy manner.935
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Pérez, J., & Berger, J. (2002). Expected-posterior prior distributions for1063

model selection. Biometrika, 89 (3), 491-512. doi: 10.1093/biomet/1064

89.3.4911065

Rosseel, Y. (2012). lavaan: an R package for structural equation modeling.1066

Journal of Statistical Software, 48 (2), 1-36. doi: 10.18637/jss.v048.i021067

Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson, G.1068

(2009). Bayesian t-tests for accepting and rejecting the null hypoth-1069

esis. Psychonomic Bulletin and Review , 16 , 225-237. doi: 10.3758/1070

PBR.16.2.2251071

Schwarz, G. E. (1978). Estimating the dimension of a model. Annals1072

of Statistics, 6 (2), 461-464. Retrieved from http://www.jstor.org/1073

stable/29588891074

Silvapulle, M., & Sen, P. (2004). Constrained statistical inference; order,1075

inequality, and shape constraints. New York: NY: Wiley.1076

van de Schoot, R., Hoijtink, H., & Deković, M. (2010). Testing inequality1077
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A Adjusting the prior mean for range constraints1100

The specification of the prior mean for β1 = Ri1θ−ri1 in range constrained1101

hypotheses consists of two steps:1102

1. Find the range constraints in the hypotheses under investigation. A1103

hypothesis contains range constraint(s) if there exist lines in Ri1 of1104

which the sum is zero vector. If there is more than one range constraint1105

in the same hypothesis, then there are multiple sets of two or more lines1106

that are added to zero. For example, hypothesis H1 : 0 < θ1 < θ2 <1107

1 with Ri1 =

 1 0
−1 1
0 −1

 and ri1 = (0, 0,−1)T contains a range1108

constraint, because (
∑3

k=1Ri1(k, 1),
∑3

k=1Ri1(k, 2)) = (0, 0).1109

2. Specify the prior mean of β1 = Ri1θ − ri1 for the range constraints.1110

β1 contains the elements related to the range constraints and other in-1111

equality constraints. The prior means for those elements of β1 that rep-1112

resent the edges of a range constraint are specified as β∗1 = −
∑K

k=1 ri1(k)/21113

where K is the number of lines in Ri1 for each range constraint and1114

ri1(k) is the constant for this range constraint, whereas the prior means1115

for other elements of β1 are 0, which is not different from that for1116

equality and inequality constrained hypotheses. For example, for hy-1117

pothesis H1 : 0 < θ1 < θ2 < 1 the edges of the range constraint are1118

β11 = θ1 > 0 and β13 = 1 − θ2 > 0. Thus, β11 and β13 have prior1119

means of 0.5, whereas β12 = θ2 − θ1 has a prior mean of 0.1120
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B User manual of BaIn1121

The software package BaIn is developed in Fortran 90 with the IMSL 5.01122

numerical library. It computes Bayes factors to evaluate any informative hy-1123

potheses (Section 2) and compare pairs from a set of informative hypotheses1124

if they are comparable (Section 3.3). BaIn can be freely downloaded from the1125

website http://informative-hypotheses.sites.uu.nl/software/bain/.1126

The downloaded folder consists of an executable file "BaIn.exe", an input1127

file "Input.txt", and an output file "Output.txt". Running "BaIn.exe" with1128

"Input.txt" located in the same folder renders "Output.txt". This appendix1129

instructs researchers to fill in the "Input.txt" such that "BaIn.exe" can prop-1130

erly read the information. The "Input.txt" mainly contains the estimates and1131

covariance matrix of parameters θ for prior and posterior specification, and1132

the restriction matrix and constant vector for each informative hypothesis.1133

The repeated measures ANOVA example in Section 2.2 is used to il-1134

lustrate the valid specification of input file. We will first display and then1135

explain the context below written in the "Input.txt" when evaluating infor-1136

mative hypothesis H2 (11) and H2′ (12).1137

1 #Number of parameters of interest; Number of informative hypotheses;1138

Sample size1139

2 4 2 361140

3 #Estimates of parameters1141

4 22.33 22 5.78 6.781142

5 #Covariance matrix of parameters1143

6 5.18 4.86 2.61 2.861144

7 4.86 5.13 2.90 3.031145

8 2.61 2.90 1.93 1.971146

9 2.86 3.03 1.97 2.391147

10 #Numbers of equality and inequality constraints in H11148

11 2 11149

12 #Restriction matrix (R0|r0) for equality constraints1150

13 1 -1 0 0 01151

14 0 0 1 -1 01152

15 #Restriction matrix (R1|r1) for inequality constraints1153

16 0 1 -1 0 01154

17 #Numbers of equality and inequality constraints in H21155

18 0 31156

19 #Restriction matrix (R0|r0) for equality constraints1157

20 #Restriction matrix (R1|r1) for inequality constraints1158

21 1 -1 0 0 01159
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22 0 1 -1 0 01160

23 0 0 1 -1 01161

1162

The input text has strictly fixed structure. There are annotation lines1163

starting with # below which the corresponding information (numbers) has1164

to be given. The first line is the annotation for the number of structural pa-1165

rameters, number of informative hypotheses, and sample size, which means1166

we need to write three numbers in the second line, i.e., 4, 2 and 9. Because1167

the number of structural parameters is 4, four numbers for the estimates of1168

parameters are presented in line 4, and a 4× 4 covariance matrix is written1169

in lines 6 to 9. Furthermore, because the number of informative hypotheses1170

is 2, two hypotheses are specified. For the first hypothesis, line 11 specifies1171

2 and 1 for the numbers of equality and inequality constraints, respectively.1172

Therefore, the augmented restriction matrix with constant vector for equal-1173

ity constraints has two rows shown in lines 13 and 14, and one row for1174

inequality constraints in line 16. For the second hypothesis, the numbers1175

of equality and inequality constraints are 0 and 3 given in line 18, respec-1176

tively. As can be seen, there is not a line with numbers below the anno-1177

tation line 19 #Restriction matrix (R0|r0) for equality constraints1178

because this hypothesis does not contain any equality constraint. While1179

from lines 21 to 23 the augmented restriction matrix for three inequality1180

constraints are displayed.1181

The estimates and covariance matrix of structural parameters can be ob-1182

tained from other statistical software, e.g., Mplus (Muthén & Muthén, 2010)1183

and R package lavaan (Rosseel, 2012), and the augment restriction matrix1184

(R0|r0) and (R1|r1) can be specified based on the informative hypothe-1185

ses under evaluation. Executing "BaIn.exe" with these information renders1186

the relative complexities, fits, and Bayes factors for informative hypotheses1187

under different choices of fraction b in the "Output.txt". The results for1188

repeated measures ANOVA example is shown as follows.1189

1190

Result for H11191

1192

Equality constraints1193

Fit Complexity (b1) Complexity (b2) Complexity (b3)1194

0.091 0.049 0.059 0.0961195

1196

Inequality constraints (conditional on equality constraints)1197

Fit Complexity (b1) Complexity (b2) Complexity (b3)1198

1.000 0.500 0.500 0.5001199
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Number of iterations1200

3000 3000 3000 30001201

1202

BF1u (b1=0.111) BF1u (b2=0.167) BF1u (b3=0.255)1203

4.603 3.069 2.0061204

1205

BF1c (b1=0.111) BF1c (b2=0.167) BF1c (b3=0.255)1206

4.603 3.069 2.0061207

1208

1209

Result for H21210

1211

Equality constraints1212

Fit Complexity (b1) Complexity (b2) Complexity (b3)1213

1.000 1.000 1.000 1.0001214

1215

Inequality constraints (conditional on equality constraints)1216

Fit Complexity (b1) Complexity (b2) Complexity (b3)1217

0.023 0.096 0.098 0.0971218

Number of iterations1219

46000 9000 9000 90001220

1221

BF2u (b1=0.111) BF2u (b2=0.167) BF2u (b3=0.255)1222

0.240 0.237 0.2381223

1224

BF2c (b1=0.111) BF2c (b2=0.167) BF2c (b3=0.255)1225

0.223 0.219 0.2201226

1227

The results contain the relative fits and complexities for both equality and1228

inequality constraints, as well as the Bayes factors under different fraction b1229

in each hypothesis. For equality constraint, the relative fit and complexity1230

are the normal posterior and prior densities in (28), and thus can be directly1231

computed. However, the computation of relative fit and complexity for in-1232

equality constraints is often difficult and needs to sample from the posterior1233

and prior distributions using Monte Carlo Markov Chain methods (Gu et1234

al., 2014). BaIn uses an efficient algorithm, which requires less number of1235

iterations (displayed below fit and complexities) in the Markov chains to ac-1236

curately estimate the relative fit and complexity. Note that the Bayes factor1237

for informative hypotheses H1 against H2 can be computed using (34) with1238

BF1u and BF2u.1239
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