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Abstract

The software package Bain (Gu, Mulder, & Hoijtink, 2017) provides an easy way for

researchers to evaluate informative hypotheses with regards to group means. Support in

the data for pairs of informative hypotheses is quantified by Bain by computing the

approximate adjusted fractional Bayes factor (AAFBF). To compute the AAFBF, Bain

only needs group mean estimates, their variances and group sample sizes as input.

Unfortunately, the common sample mean and its variance are known to be highly

susceptible to non-normality and outliers. Therefore, first of all, this paper investigates

with a simulation study to what extent the AAFBF resulting from the sample mean and

its variance is affected by non-normality and outliers. Furthermore, Bain provides an

unique opportunity to combine Bayes factors with robust statistics. Hence, secondly, this

paper investigates with a simulation study to what extent the effect of non-normality and

outliers can be ameliorated by replacing the sample mean and the corresponding variance

estimates by robust estimates, creating the robust Bayes factor AAFBFROB. Results of the

simulation studies showed that the performance of the AAFBF decreases when

non-normality or outliers are present and that the AAFBFROB is less affected in most

instances. An example study is presented to show how the AAFBFROB can be used and

instructions how to compute it are provided. Finally, recommendations for researchers as

to when use of the AAFBFROB is preferred over use of the AAFBF are given.

Keywords: ANOVA, Bain, Bayes factor, informative hypotheses, robust statistics
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Robust Bayes factors for Bayesian ANOVA: overcoming adverse effects of non-normality

and outliers

Introduction

Analysis of variance (ANOVA) is a statistical approach for comparing means that is

used by many researchers. ANOVA can only be validly applied when the data meets

certain assumptions (Miller, 1998). That is, ANOVA assumes that the data is normally

distributed within each group, that within group variances are equal and that observations

are independent. Unfortunately, violations of these assumptions can seriously bias results

from an ANOVA (Miller, 1998; Wilcox, 2017, pp. 9-11). In this paper, the impact and

approach for handling violations of the normality assumption will be investigated in the

context of a Bayesian ANOVA. To deal with possible violations of the equal within group

variances assumption, an unequal variances ANOVA can be used, as will be done in this

paper. Violations of the independent observations assumption can be handled by modelling

dependence between the observations, for example with a multi-level model (Hox, n.d.).

However, this paper will only investigate the situation where the observations are

independent.

Notably, even a small departure from normality can seriously affect an ANOVA. For

example, when a distribution is skewed (i.e. asymmetric) the sample mean no longer

represents the central tendency, where the bulk of the data is located (Wilcox, 2017, p. 5).

Furthermore, when a distribution is heavy-tailed (i.e. has more observations in the tails)

the error variance of the mean increases, thereby leading to a reduced power of statistical

tests involving the mean (Wilcox, 2017, p. 2). Unfortunately, research has shown that

violations of the normality assumption are frequent. Specifically, in their research of real

samples both Micceri (1989) and Cain, Zhang, & Yuan (2016) discovered that the majority

of distributions is skewed or heavy-tailed. Particularly in psychology, because of the use of

ability and psychometric measures (often skewed) and sum and gain scores (often

heavy-tailed), data are often non-normally distributed (Bakker & Wicherts, 2014; Lantz,
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2012).

Besides non-normality, this paper will also focus on the impact of and approach for

handling outliers. Hawkins (1980, p. 1) defines an outlier to be “an observation which

deviates so much from other observations as to arouse suspicions that it was generated by a

different mechanism”. Hawkins (1980, pp. 1-2) further defines two outlier generating

mechanisms. In one, outliers are generated by sampling from a heavy-tailed distribution

and are thus extreme, but ‘valid’, observations. In the other, outliers are generated by

sampling from two distributions, where one is the distribution of interest and the other

generates contaminated observations. A real-life example of such a mechanism could be the

generation of ‘invalid’ observations by some sort of distraction during data collection for

some participants. For statistical inference, outliers resulting from both generating

mechanisms are problematic, since they result in increased error variance of the mean

(Wilcox, 2017, p. 2) and biased parameter estimates (Wilcox, 2017, p. 7).

Thus, if an ANOVA is applied to a dataset that contains non-normality or outliers,

inference can be highly inaccurate. Ideally, the influence of non-normality and outliers on

estimation and hypothesis testing should be minimized. One manner to achieve this

objective is to use robust statistical inference. Robust statistics are measures of central

tendency and spread that are unaffected by slight changes in a distribution (Wilcox, 2017,

p. 25). Usually, the central tendency and spread of a distribution are measured by

non-robust statistics, like the common sample mean ȳ and standard deviation s. Indeed,

these statistics are also the basis of an ANOVA. However, as previously indicated, the value

of ȳ and s can be heavily influenced by non-normality and outliers. Conversely, robust

statistics more accurately estimate central tendency and spread (Ruckstuhl 2014; Wilcox

2017, pp. 25-31). A simple example of a robust statistic is the median. Unlike the sample

mean, the value of the median is unaffected by up to 50% outliers (Wilcox, 2017, p. 31).

Robust statistics are mostly discussed in the context of estimation and null hypothesis

significance testing, but not in the context of Bayesian model selection. The focus of this
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paper will be on a special form of Bayesian model selection in which the Bayes factor (BF)

is used to evaluate informative hypotheses with respect to the group means of an ANOVA

model (Hoijtink, 2012; Klugkist, Laudy, & Hoijtink, 2005). In the context of an ANOVA,

an informative hypothesis can be used to state an expected ordering of means, for example,

H1 : µ1 < µ2 < µ3, (1)

where µj represents the mean of Group j = 1, 2, 3. With the Bayes factor, the relative

support in the data can be computed for an informative hypothesis, Hk, compared with an

unconstrained hypothesis, Hu, or another informative hypothesis, Hk′ . For example, H1, as

stated in Equation 1, can be compared with another informative hypothesis,

H2 : µ1 < µ2 = µ3. (2)

Finding a BF12 of 5 indicates that the support in the data for hypothesis H1 is five times

larger than the support for hypothesis H2.

Recently, Gu, Mulder, & Hoijtink (2017) developed the approximate adjusted

fractional Bayes factor (AAFBF). With the AAFBF, informative hypotheses can be

evaluated for virtually any statistical model. Additionally, the AAFBF is implemented in

an easy-to-use software package called Bain (available at informative-hypotheses.sites.

uu.nl/software/bain/). For the computation of the AAFBF, only the estimates and

covariance matrix of the parameters of the statistical model at hand and the sample sizes

per group are needed.

In the ANOVA context, the parameter estimates of interest are the group means. In

a regular ANOVA, these are estimated by means of the sample mean. Here the covariance

matrix of the group mean, as needed for Bain, is equal to the variance of the group mean.

However, as previously stated, sample means and their variances can be seriously affected

by non-normality or outliers in the data. Hence, the expectation is that the AAFBF

resulting from these estimates is also negatively affected by non-normality or outliers.

However, to our knowledge, this has never been formally investigated. Therefore, this

https://informative-hypotheses.sites.uu.nl/software/bain/
https://informative-hypotheses.sites.uu.nl/software/bain/
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paper aims to investigate to what extent the AAFBF based on the regular sample mean

estimates and their variances is affected by non-normality or outliers.

Since for the computation of the AAFBF only parameter estimates, their covariance

matrix and the group sample sizes are needed, it provides an unique opportunity to

combine Bayesian evaluation of informative hypotheses with robust statistics. That is, in

the ANOVA context, sample means and their variances can be replaced by robust

counterparts to render a robust Bayes factor, AAFBFROB. Hence, a second aim of this

paper is to investigate to what extent using the AAFBFROB instead of the AAFBF results

in a decreased effect of non-normality or outliers.

The paper is organized as follows. In the next section, a robust estimator suitable for

the ANOVA context is introduced. Moreover, this section explains how a robust estimator

can be used to construct AAFBFROB. Thereafter, the effect of non-normality and outliers

on the AAFBF and the AAFBFROB is investigated by means of two simulation studies.

Firstly, the set-up and results for the simulation study into the effect of non-normality are

described. Next, this is described for the simulation study into the effect of outliers.

Subsequently, the use of the AAFBFROB is demonstrated by means of an example study.

Finally, the results and implications of the research are discussed.

Robust inference

The ANOVA model

This paper focusses on evaluating informative hypotheses in the context of the

ANOVA model which is defined as follows

yi =
J∑

j=1
µjDji + εi, (3)

where yi is the observation on the dependent variable for person i = 1, . . . , N , where N

denotes the sample size, µj denotes the mean of Group j = 1, . . . , J , where J is the total

number of groups, Dji = 1 for person i in group j and 0 otherwise and εi denotes the error
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in prediction for person i, with εi ∼ N (0, ∑J
j=1 Djiσ

2
j ), where σ2

j denotes the within group

error variance for group j.

The parameters in the ANOVA model of which estimates need to be supplied to Bain

are the group means µj and their variances VAR(µj). Usually, µj is estimated by the

sample mean ȳj and its variance VAR(µj) by

VAR(ȳj) =
s2

j

Nj

, (4)

where s2
j is the within group variance and Nj is the sample size per group. In the next

section, robust alternatives for estimating µj and VAR(µj) are proposed.

A robust estimator of the group means and its variance

Wilcox (2017, pp. 45-93) discusses the performance of various robust estimators of µj

and VAR(µj). From this discussion, a robust estimator called the 20% trimmed mean

emerges as a suitable estimator of µj. Simulation studies have shown that the 20%

trimmed mean compares well to other robust estimators in terms of small-sample efficiency

and accurate coverage probability (Wilcox, 2017, pp. 90-93).

The sample 20% trimmed mean is computed as

ȳt = y(g+1) + ...+ y(N−g)

N − 2g , (5)

where y1, ..., yN is a random sample of size N ,

y(1) ≤ y(2) ≤ ... ≤ y(N) (6)

are the observations written in ascending order, yg is the gth sample quantile, where

g = [γN ], in which γ = 0.2 is the proportion of trimming and [γN ] is the value of γN

rounded down to the nearest integer. From Equation 5 it becomes clear that the 20%

trimmed mean deals with reducing the effect of non-normality and outliers by disregarding

20% of a sample’s distribution at both tails. Note that for an ANOVA, the sample 20%

trimmed mean needs to be computed for each group.
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The robustness of the 20% trimmed mean can be evaluated by its influence function

and breakdown point. The influence function of an estimator can be seen as a measure of

local reliability: it measures the effect of the size of a single additional data point on the

value of the parameter estimate (Ruckstuhl, 2014). Conversely, the breakdown point of an

estimator can be seen as a measure of global reliability: it measures the maximum

proportion of outliers for which an estimator still returns reliable estimates (Ruckstuhl,

2014). Both measures of robustness are illustrated in Figure 1.

Firstly, Figure 1(a) illustrates the empirical influence function of the sample mean

and 20% trimmed sample mean. That is, for a normally distributed, standardized sample

of size 65, the value of the group mean estimate is recalculated after a single observation

with a value between −10 and 10 is added to the sample. As can be seen in Figure 1(a),

the value of the sample mean estimate ȳ is heavily influenced when the additional data

point is an increasingly extreme outlier. In fact, the value of ȳ will increase without bounds

for an increasingly large additional data point. In contrast, an increasingly outlying data

point only has a bounded influence on the value of the 20% trimmed sample mean estimate

ȳt: an additional data point that is too extreme is trimmed and can therefore not influence

the group mean estimate. Having, a bounded influence function is a prerequisite for

robustness (Wilcox, 2017, p. 30). Hence, based on its influence function, the sample mean

cannot considered to be robust, while the 20% sample trimmed mean can.

Subsequently, Figure 1(b) illustrates the breakdown point of ȳ and ȳt by recalculating

the value of the group mean estimate, again for a standardized sample of size 65, when an

increasing amount of extreme outliers is added. That is, each time, a proportion of

randomly chosen value from the sample is replaced by y = 100. As can be seen in Figure

1(b), the breakdown point of ȳ is 0.0. That is, one single outlier can cause its value to go

to plus or minus infinity. In contrast, the breakdown point of ȳt is 0.2. That is, up to 20%

outliers, its value is barely affected by their size, even though the outliers are as extreme as

in the current example. Hence, the 20% trimmed mean can handle 20% outliers before it
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breaks down.

Estimating the variance of the sample trimmed mean. From what is stated

above, it becomes clear that for the estimation of a group mean the 20% trimmed mean is

a suitable robust replacement for the sample mean. As mentioned previously, in addition

to an estimate of each group mean, Bain needs an estimate of the corresponding variances.

Thus, when ȳt is used to estimate the group mean, we also need an estimate of its variance,

VAR(ȳt). Unfortunately, the computation of VAR(ȳt) is not as straightforward as the

computation of its non-robust counterpart stated in Equation 4. Since the computation of

ȳt makes use of on an ordered sample, see Equation 6, the observations of a trimmed

sample are dependent. Therefore, VAR(ȳt) cannot be simply obtained by computing the

variance of the untrimmed values because this method relies on the assumption of

independent observations. Therefore, for the estimation of VAR(ȳt), this paper follows a

procedure that has been shown to give good results, described in Wilcox (2017, pp. 60-64).

This procedure computes VAR(ȳt) by making use of some convenient properties of

the influence function of ȳt. Providing the formula for the influence function is beyond the

scope of this paper, but it can be found in Wilcox (2017, p. 34). For the computation of

VAR(ȳt), it is important to know that the influence function of ȳt includes Winsorization of

a random sample and that for the computation of VAR(ȳt) the Winsorized sample mean

and the sample Winsorized variance are needed. For this purpose, a short description of

Winsorization follows.

Winsorization of a random sample resembles trimming of a random sample. However,

instead of disregarding observations in the tails of the sample, Winsorization includes them

but diminishes their influence by pulling them closer. That is, a random sample is

Winsorized setting the g = [γN ] smallest values of the sample equal to yg+1, the g + 1th

smallest observation. Equally, the g largest values of the sample are set equal to yN−g, the

N − gth largest observation. The mean of the resulting sample is the Winsorized sample
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mean, w̄. The sample Winsorized variance, s2
w is computed with

s2
w = 1

N − 1

N∑
i=1

(wi − w̄)2, (7)

where wi is an observation from the Winsorized sample for person i = 1, . . . , N . Now,

VAR(ȳt) can be computed by

VAR(ȳt) = s2
w

(1− 2γ)2N
. (8)

A robust approximate adjusted fractional Bayes factor

As stated previously, the way in which the AAFBF is computed provides unique

opportunities for combining Bayesian evaluation of informative hypotheses with robust

statistics. Namely, by replacing in Bain the regular sample mean estimate of the group

mean and its variance by a robust counterpart. In this paper, it is proposed to use the 20%

sample trimmed mean and its variance as replacements for the sample mean and its

variance. This section describes the computation of the AAFBF and how the 20% trimmed

mean can be implemented in the AAFBF to compute AAFBFROB. The following sections

will investigate whether and in which situations it is advantageous to use the AAFBFROB

compared to the AAFBF.

Let µ represent a vector of length J containing the group means, that is, the

parameters in an ANOVA with respect to which hypotheses are formulated. An AAFBF

can be computed to evaluate support in the data for informative hypotheses of the form,

Hk : Skµ = sk, Rkµ > rk, for k = 1, . . . , K, (9)

where K is the number of informative hypotheses considered, Sk is a pk × J matrix

imposing pk equality constraints on µ, Rk is a qk × J matrix imposing qk inequality

constraints on µ, and sk and rk are vectors containing constants of size pk and qk

respectively. Important is furthermore the unconstrained hypothesis, Hu : µ, in which

there are no constraints on the group means. Using Equation 9, hypotheses like

H1 : µ1 > µ2 > µ3; H2 : µ1 − µ2 = µ3; and H3 : µ1 = µ2 > µ3 can be formulated.
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As described in Gu et al. (2017) and Hoijtink, Gu, & Mulder (n.d.) for the extension

to multiple groups, the AAFBFku quantifies the relative support in the data for Hk

compared to Hu,

AAFBFku = fk

ck

, (10)

where fk and ck are the fit and complexity of Hk relative to Hu. As, for instance, the

AAFBFku is 5, this means that the support in the data for Hk is 5 times larger than the

support for Hu.

The fit of Hk quantifies how well the constraints imposed by the hypothesis are in

agreement with the data,

fk =
∫
µ∈Hk

g(µ|Y ,D)dµ ≈
∫
µ∈Hk

N (µ|µ̂,Σ)dµ, (11)

where g(µ|Y ,D) is the posterior distribution of the group means given the data, in which

Y contains the scores on the dependent variable and D contains the scores on the dummy

variables indicating to which group an observation belongs, and N (µ|µ̂,Σ) denotes the

normal approximation of the posterior distribution as implemented in Bain, with µ̂ a

vector containing the group mean estimates and Σ a J × J matrix with on the diagonal

VAR(µj) and off the diagonal zeros. From the normal approximation of the posterior

distribution, it becomes apparent that for Bain only parameter estimates and their

covariance matrix are needed. To obtain the AAFBF, µ̂ is replaced by ȳ, a vector with the

sample mean estimates of the group means and the diagonal entries of Σ are replaced by

VAR(ȳ). To obtain the AAFBFROB instead, µ̂ is replaced by ȳt, a vector with the 20%

sample trimmed mean estimates of the group means and the diagonal entries of Σ are

replaced by VAR(ȳt).

As an example of the fit, consider the fit of hypotheses H1 : µ1 > µ2 > µ3 to two

imaginary datasets. Obviously, the fit of H1 is better for Dataset A in which

ȳ1 = 0.4, ȳ2 = 0.2 and ȳ3 = 0.0 than for Dataset B in which ȳ1 = 0.2, ȳ2 = 0.4 and ȳ3 = 0.0.

Indeed, when we use Bain to compute the fit for H1 to these two datasets (setting Nj = 69
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and the diagonal entries in Σ equal to 0.015) we find a fit of 0.75 for Dataset A and a fit of

0.12 for Dataset B, indicating better fit of H1 to Dataset A.

The complexity of Hk quantifies the specificity of the hypothesis,

ck =
∫
µ∈Hk

N (µ|µB,Σ/b)dµ, (12)

where N (µ|µB,Σ/b) is the normal prior distribution of the group means, derived from the

normal posterior in Equation 11, with

µB ∈ {SkµB = sk,RkµB = rk} for k = 1, . . . , K, (13)

that is, µB denotes a vector containing group means on the boundary of all hypotheses

under investigation, and Σ/b specified using a fraction b of the data. Here, b = [b1, ..., bJ ]

is a vector containing group specific fractions, where bj = 1
J

C
Nj

, in which C is the number of

independent constraints in the hypotheses under investigation. Note that the adjusted

mean µB and the fraction b are chosen to obtain a complexity term that adequately

quantifies the parsimony of a hypothesis, thereby rendering a Bayes factor that shows

consistent behaviour (Hoijtink et al., n.d.). For more information about the specification of

bj and C see Gu et al. (2017) and Hoijtink et al. (n.d.).

As an example of the complexity, consider the complexity of hypotheses

H1 : µ1 > µ2 > µ3, H2 : µ1 > {µ2, µ3} and H3 : µ1 > µ2, µ3. The specificity of these

hypotheses decreases from H1 to H3; while H1 specifies a complete ordering of means, H2

and H3 both specify an incomplete ordering of means. In H2, the expectation that µ1 is

larger than both µ2 and µ3 is stated, without specifying an expected ordering of µ2 and µ3.

In H3, the expectation that µ1 is larger than µ2 is stated, without constraints on the size of

µ3. Therefore, H2 is more specific than H3. With the decrease in specificity, the complexity

increases. That is, when Bain is used to compute the complexity for these hypotheses for

any dataset, the complexity of H1 is 1/6, of H2 is 1/3 and of H3 is 1/2.

Finally, Bayes factors can be converted into posterior model probabilities (Klugkist et

al., 2005). Posterior model probabilities (PMPs) reflects the support in the data for each



ROBUST BAYES FACTORS FOR BAYESIAN ANOVA 13

hypothesis under consideration on a scale from 0 to 1. The PMPs of the hypotheses under

investigation sum up to 1 and a larger PMP indicates better support in the data for the

hypothesis. Since the size of a Bayes factor can vary from 0 to infinity and is independent

of the size of the Bayes factors of other hypotheses under investigation, PMPs are

considered to be easier to interpret. In Bain, PMPs are automatically included in the

output and computed under the assumption that the prior probabilities of all hypotheses

are equal. This assumption ensures that the information with respect to the hypotheses of

interest is the same irrespective of whether the Bayes factors or the PMPs are evaluated.

Simulation Study I: Non-normality

In this section, the set-up and results of the simulation study with respect to the

effect of non-normality is described. The objective of the simulation study is to investigate

to what extent the AAFBF is affected by non-normality and whether and in which

situations using the AAFBFROB is advantageous over using the AAFBF. In the next

section, the effect of outliers will be investigated.

Methods

To manipulate non-normality, data is simulated in R (R Core Team, 2016) by taking

random numbers from a g-and-h-distribution (Wilcox, 2017, pp. 111-113),

yi = exp [gzi]− 1
g

exp
[
hz2

i

2

]
, (14)

where zi is sampled from the standard normal distribution, with i = 1, . . . , Nj for

j = 1, 2, 3, and g and h are non-negative constants that can be altered to manipulate

respectively the skewness and heavy tailedness of the distribution of yi. When g = 0, the

function is given by

yi = zi exp
[
hz2

i

2

]
. (15)

When the parameters g and h are both 0, the g-and-h distribution corresponds to the

standard normal distribution.
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Four combinations of the g and h parameter are considered, resulting in four different

population distributions: one normal, one moderately skewed, one extremely skewed and

one extremely heavy-tailed. These specific distributions were chosen to represent

commonly encountered distributions in real samples (Cain et al., 2016; Micceri, 1989).

Table 1 gives an overview of the four combinations of g and h parameters and resulting

distributions. Figure 2 shows the shape of the distributions. As Table 1 shows, when the

distribution is skewed, the mean is no longer equal to 0. However, Figure 2 shows that the

central tendency of the data is still located around 0. With the sample trimmed mean, a

better estimate of the central tendency of the data will be achieved.

Data is simulated as follows. Firstly, from each distribution defined in Table 1, 1000

datasets are simulated by sampling Nj = 69 observations from a standard normal

distribution for j = 1, 2, 3. Secondly, observations are transformed into a sample from the

g-and-h-distribution using Equations 14 and 15. Finally, differences between group means

are induced by adding a group-specific value to each observation. These group-specific

values depend on the true hypothesis in three scenarios. In the first scenario,

H0 : µ1 = µ2 = µ3 is the true hypothesis; in the second scenario, H1 : µ1 < µ2 < µ3 is the

true hypothesis; and in the third scenario, Hu : µ1, µ2, µ3 is the true hypothesis. These

scenarios and corresponding group means are displayed in Table 2. Note that the values in

Table 2 represent the shift of the distribution from the means displayed in Table 1. The

group means for H1 and Hu are chosen to represent a medium effect size as measured by

Cohen’s f (Cohen, 1988) for normally distributed data, that is, f = .25. The sample size

per group, Nj = 69, is computed with G*Power (Faul, Erdfelder, Lang, & Buchner, 2007)

to have a power of .90 to detect a medium effect with null hypothesis significance testing in

the regular ANOVA setting.

For each simulated dataset the sample means and sample trimmed means with their

corresponding variances for the three groups are computed. For the sample trimmed mean,

this is done with help of the R package WRS2 (Mair, Schoenbrodt, & Wilcox, 2017). The
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estimates are given as input to Bain 0.1.0 to calculate Bayes factors and PMPs comparing

evidence for the hypotheses stated in Table 2.

For each of the four distributions displayed in Table 1 estimates of the mean of Group

1 under H0 are used to compare the performance of the sample mean and the sample

trimmed mean. The performance is evaluated by computing average deviation from zero,

that is, the bias of the estimator, and coverage probability of the 95% confidence interval

(CI). Note that the deviation from zero is computed because the data are centred around

zero, as can be seen in Figure 2. The average deviation from zero is denoted by δ and

computed with

δ = (R−1
R∑

r=1
µ̂r)− 0, (16)

where µ̂r is either the sample mean or sample trimmed mean estimate of the mean of

Group 1 for dataset r = 1, . . . , 1000 and R = 1000 is the number of simulated datasets.

The coverage probability of the 95% CI of µ̂r is computed by counting how often zero is in

the interval, whereby the limits of the 95% CI are

µ̂r ± t0.975 SE(µ̂r), (17)

where t0.975 is the .975 quantile from a Student’s t distribution with Nj − 1 degrees of

freedom for the sample mean estimate and Nj − 2γNj − 1 degrees of freedom for the

sample trimmed mean estimate (Wilcox, 2017, pp. 115-119) and SE(µ̂r) is the standard

error of the estimate, that is, the square roots of Equations 4 and 8 for ȳ and ȳt

respectively. Finally, for each of the 12 scenarios that arise if the four distributions in Table

1 are crossed with the three scenarios in Table 2, the performance of the AAFBF and the

AAFBFROB is compared by computing the proportion of the 1000 simulated datasets in

which the true hypothesis has the large posterior model probability.

Results

As can be seen in Table 3, when sampling is from a skewed distribution the sample

trimmed mean more accurately estimates central tendency and has a higher coverage
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probability than the sample mean. When sampling is from a normal or heavy-tailed

distribution, there is no difference in performance between the sample mean and sample

trimmed mean.

Table 4 shows for each of the 12 investigated scenarios the proportion of times the

true hypothesis has the largest PMP in 1000 simulated datasets. Under H0, no difference

in performance between the AAFBF and the AAFBFROB is found. Under H1, the

proportion of times the true hypothesis is selected is strongly affected by the distributional

shape for the AAFBF but barely affected by distributional shape for the AAFBFROB.

However, the AAFBF selects the true hypothesis more often than the AAFBFROB when

the distribution is normal or moderately skewed, while the AAFBFROB performs better

when the distribution is extremely skewed or heavy tailed. A similar pattern of results is

found when Hu is true.

Manipulation of effect and sample sizes

To asses if the results in Table 4 are dependent on effect size or sample size,

additional simulations are performed in which effect size and sample size are manipulated.

Firstly, simulations are repeated for the moderately skewed distribution with two additional

effect sizes. Simulations are repeated for a small Cohen’s f , i.e. f = .1, and for a large

Cohen’s f , i.e. f = .4, (Cohen, 1988), both when H1 is true and when Hu is true. Group

means representing a small and large Cohen’s f are shown in Table 5. The influence of

choice of effect size on the simulation results is only evaluated for one distribution, chosen

to be the moderately skewed distribution. While that way results are not fully inclusive,

the influence of effect size can be assessed without presenting an overflow of results.

Secondly, the influence of choice of sample size on the simulation results is evaluated.

While a sample size of Nj = 69 would be sufficient to detect a medium effect with a regular

ANOVA, both smaller and larger samples are frequently encountered in psychological

research (Kühberger, Fritz, & Scherndl, 2014). Therefore, the simulations are repeated



ROBUST BAYES FACTORS FOR BAYESIAN ANOVA 17

with two additional sample sizes per group, namely a small sample size, Nj = 30 and a

large sample size, Nj = 100. Again, simulations are only repeated for one distribution, in

this case the extremely skewed distribution.

Results in Table 6 show that the difference in performance between the AAFBF and

the AAFBFROB seems to be independent of choice of effect size. Results in Table 7 show

that the difference in performance between the AAFBF and the AAFBFROB also seems to

be independent of choice of sample size. Therefore, the expectation is that the results in

Table 4 are for all distributional shapes independent of effect and sample size.

In conclusion, the ability of the AAFBF to select the true hypothesis is greatly

affected by distribution shape. In contrast, performance of the AAFBFROB is quite

constant irrespective of distributional shape. When the violation of normality is minor, the

AAFBF performs better than the AAFBFROB and when the violation of normality is

major, the AAFBFROB performs better than the AAFBF. These results seem to hold for

multiple types of effect and sample sizes. When interpreting these results one should keep

in mind that, on the one hand, previous research has shown that approximately half of

investigated real samples in psychology were either normally distributed or show minor

violations of normality. On the other hand, the other half showed violations of the extent

equal to extreme skewness and heavy tailedness as defined in this research (Cain et al.,

2016; Micceri, 1989). Moreover, the influence of outliers has yet to be taken into account,

as will be investigated in the next section.

Simulation Study II: Outliers

Methods

In this section, the effect of outliers on the performance of the AAFBF and

AAFBFROB is assessed by means of a simulation study. Data is simulated in R by taking

random numbers from a normal distribution with group means as specified in Table 2 and

within group standard deviation 1.0. Just as in the non-normality simulations, three
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scenarios are considered, one in which H0 is true, one in which H1 is true and one in which

Hu is true.

With respect to the generation of outlying values, this paper focusses on two

scenarios. One where outliers occur solely in the right tail, i.e. larger values, of the

distribution of the data in Group 1. A real example of this scenario would be a

psychological experiment that measures reaction times in three conditions, while in Group

1 an event occurred that disrupted the attention of several participants, causing an increase

in reaction time that is not caused by the experimental manipulation. In the other

scenario, outliers occur randomly in the left and right tail of the distribution of the data in

Group 1. A real life example of this scenario would be when measurements on a depression

questionnaire with Likert type items are in one group taken at the end of a exhausting day,

leading to a loss of concentration for several participants. Some of these participants might

then choose to always select the first option, while others might choose to always select the

last option.

In order to simulate outliers in each dataset a proportion of observations from Group

1 is randomly selected to be replaced by outlying values. Since the breakdown point of the

trimmed mean is known to be 0.2, up to 20% outliers are considered. The size of the

outliers is based on the robust MAD-Median rule for detecting outliers (Wilcox, 2017,

p. 101). That is, for randomly chosen observations the score on the dependent variable are

replaced by values that are

ỹ1 ± u×MADN1, (18)

where ỹ1 is the median of Group 1 without outliers, u is a random number sampled from a

uniform distribution on the interval 2.5 and 5 to ensure some variation in the size of the

outliers, and MADN1 is the median absolute deviation (MAD) for Group 1 rescaled

following conventions so that its value estimates the standard deviation σ when samples

are taken from a normal distribution (Wilcox, 2017, p. 78).

In the remainder, the procedure described in the previous section for the
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non-normality simulations is repeated. That is, for each dataset, the sample mean and

sample trimmed mean with their corresponding variances are computed. Together with the

group sample sizes, these are given as input to Bain to calculate Bayes factors and PMPs

for the hypotheses stated in Table 2. The performance of the sample mean versus the

sample trimmed mean is evaluated by computing average deviation from zero, that is, the

bias of the estimator, and coverage probability of the 95% CI of the estimates of the mean

of Group 1 under H0. Note that where in the non-normality simulations it was attempted

to provide a good estimate of the central tendency of the data, here it is attempted to

provide a good estimate of the group means presented in Table 2. Finally, the performance

of the AAFBF and the AAFBFROB in the presence of outliers is compared using the

proportion of the 1000 simulated datasets in which the true hypothesis has the largest

PMP.

Results

Figure 3 shows the bias and coverage probability of the 95% confidence interval of

sample mean and sample trimmed mean estimates of µ1 = 0 as a function of the number of

outliers for both outlier scenarios. As can be seen in Figure 3, the sample trimmed mean

outperforms the sample mean in terms of less bias and higher coverage probability when

outliers are added to the right tail of the distribution of the data in Group 1. When outliers

appear in both tails of the distribution of the data in Group 1, both the performance of the

sample mean and the sample trimmed mean is not affected by the outliers.

Figure 4 shows the effect of outliers on the proportion of datasets in which the true

hypothesis is selected. Firstly, Figure 4(a) shows the effect when outliers appear in the

right tail of the distribution of the data in Group 1. Overall, Figure 4(a) shows that the

AAFBFROB is less affected by outliers than the AAFBF. Especially when H0 is true, a

remarkable difference in performance is shown. While the proportion of datasets in which

the true hypothesis is selected drops heavily for the AAFBF, the proportion remains fairly
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constant for the AAFBFROB. When H1 is true, both the AAFBF and the AAFBFROB are

affected by outliers. However, with the exception of when the dataset contains zero

outliers, the performance of the AAFBFROB is better than the performance of the AAFBF.

When Hu is true, the AAFBF seems to outperform the AAFBFROB because it selects

the true hypothesis more often. However, in fact, the AAFBF is again more affected by

outliers than the AAFBFROB. What is important to consider when interpreting these

results is that the introduction of outliers in the right tail of the distribution of Group 1

leads to an undesirable increase of the estimate of the mean of Group 1, as shown in Figure

3(a). In Table 2 it can be seen that when Hu is true the group means are approximately

0.31, 0.00 and 0.61 for Group 1, 2 and 3 respectively. Figure 3(a) shows that with, for

example, five outliers the estimated mean of Group 1 increases on average with 0.27 for the

sample mean and with 0.11 for the sample trimmed mean. Hence, with five outliers, the

average ȳ1 is 0.58 and the average ȳt1 is 0.42, leading to an ordering of group means that is

further away from both H0 and H1. Therefore, in this situation, the outliers lead to extra

support of the true hypothesis, even though this support is unjustified. This unjustified

increased support for the true hypothesis is stronger for the AAFBF than for the

AAFBFROB.

Figure 4(b) shows the effect when outliers appear in both tails. When H0 is true,

both the performance of the AAFBF and the AAFBFROB are not affected by outliers. This

could be expected since outliers appear in both tails of the distribution of the data in

Group 1 and this does not cause the estimate of the mean of Group 1 to be biased, as can

be seen in Figure 3(a). Hence, outliers in both tails of the distribution of the data in Group

1 do not necessarily lead to a different ordering of group means. It does, however, lead to

an increased variance of the mean estimate of Group 1 (Wilcox, 2017, p. 2), creating

artificially more overlap between Group 1 and other groups. When H1 is true, this leads to

an unjustified increased support in the data for H0, because there will be greater overlap of

Group 1 with Group 2. Figure 4(b) shows that when H1 is true, both the AAFBF and the
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AAFBFROB are affected by the outliers, but the AAFBFROB less than the AAFBF. Here,

the AAFBF outperforms the AAFBFROB when the dataset contains zero or one outlier,

but the AAFBFROB performs equally or better when the datasets contains two outliers or

more. When Hu is true, the AAFBF outperforms the AAFBFROB over the range of outliers

considered. However, while the performance of the AAFBF is affected by the outliers, the

proportion of datasets in which the true hypothesis is selected by the AAFBFROB remains

fairly constant.

In conclusion, overall the AAFBFROB is less affected by outliers than the AAFBF. In

most situations, the AAFBFROB performed about the same as the AAFBF with zero or few

outliers and better with more outliers. Moreover, even though the proportion of datasets in

which the true hypothesis is selected is larger for the AAFBF than for the AAFBFROB

under Hu, the AAFBF was also more affected by the outliers than the AAFBFROB. In the

next section, an illustrative example of the robust Bayes factor for Bayesian ANOVA will

be presented. In the section thereafter, the results and implications of the research will be

discussed and an overall conclusion will be presented.

Example Study

This section provides an example of how the AAFBFROB can be used and

instructions about how it can be computed. The data used for this example study is

collected for one of the replication studies of the Reproducibility Project Psychology (Open

Science Collaboration, 2012). An original study by Williams & Bargh (2008) into the

influence of spatial distance cues on reported feelings of closeness towards family members

and home town was replicated by Joy-Gaba, Clay, & Cleary (2016). The data from the

replication study can be retrieved from https://osf.io/vnsqg/. For this illustration, the

effect of spatial distance cues on reported feelings of closeness towards specifically one’s

parents is re-analysed with a robust Bayesian ANOVA.

The variable closeness to parents is measured by means of a 7-point Likert type item,

https://osf.io/vnsqg/
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known to be susceptible to skewness and outliers (Dawes, 2002). This is because some

participants tend to have deviating response styles. For example, some people tend to only

use extreme responses, leading to outliers. Furthermore, research has shown that

participants tend to use a range of response categories of about half the scale, leading to

skewed data. Importantly, differences in response styles do not necessarily reflect

differences in reported feelings of closeness. Hence, based on the results of this paper, for

the evaluation of hypotheses for the Joy-Gaba et al. (2016) data with a Bayesian ANOVA

use of the AAFBFROB is preferred over use of the AAFBF.

Participants in the experiment are divided over three groups: in Group 1 participants

received a closeness prime; in Group 2 participants received an intermediate prime; and, in

Group 3 participants received a distance prime. Following the spatial prime, participants

rated their bonds to their parents on a scale that ranged from 1 (not at all strong) to 7

(extremely strong). Based on the results from the original study by Williams & Bargh

(2008) it can be expected that

H1 : µcloseness > µintermediate > µdistance, (19)

that is, participants primed with spatial closeness are expected to report on average

stronger bonds to their parents than participants that received an intermediate prime,

which are in turn expected to report on average stronger bonds to their parents than

participants primed with spatial distance. Since it is still an option that the priming does

not work, the expectation captured in H1 will be compared with

H0 : µcloseness = µintermediate = µdistance, (20)

which states that reported strength of the bond to parents will not differ by experimental

manipulation. Finally, since possibly both H0 and H1 are incorrect,

Hu : µcloseness, µintermediate, µdistance, (21)

is included in the set of hypotheses under consideration, where Hu imposes no constraints
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on the group means, thereby representing the possibility that an ordering of group means

not specified by either H0 or H1 is going on.

Descriptives of the sample of Joy-Gaba et al. (2016) are shown in Table 8.

Interestingly, a large difference between the group mean estimated by the sample mean and

sample trimmed mean is found. For each group, the sample trimmed mean estimate is

larger than the sample mean estimate. As shown in this research, for example in Table 3

and Figure 3(a), we can expect the sample trimmed mean to give a better estimate of the

central tendency of the data and to be less affected by potential non-normality and outliers.

To perform the analysis with the AAFBFROB the central tendency of the groups is

estimated by means of the sample trimmed mean. Subsequently, the variance of the sample

trimmed mean is estimated. Together with the group sample sizes and the hypotheses

formulated as in Equation 9, these estimates are given as input to Bain. The R code to

perform the analysis with the AAFBFROB can be found in the Appendix, as well as output

from the analysis.

Results from the analysis are shown in Table 9. As can be seen in Table 9, the

support in the data is largest for H0. The support in the data for H0 is 32.80 times larger

than for Hu. The support in the data for H1 is smaller than for Hu, namely 1/0.15 = 6.67

times smaller. Further, the posterior model probabilities show that H0 is the best

hypothesis under investigation. Results from this analysis with the AAFBFROB are in

agreement with the results from Joy-Gaba et al. (2016), who failed to reject the null

hypothesis in an ANOVA. Both the results from this analysis and from the study of

Joy-Gaba et al. (2016) disagree with the original study, that concluded that H1 was the

best hypothesis.

Discussion

The aims of this paper were twofold. Firstly, it investigated the robustness of the

AAFBF as computed by the R package Bain (Gu et al., 2017) against non-normality and
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outliers by means of a simulation study. Results showed that when data is non-normally

distributed or contains outliers, the percentage of datasets in which the true hypothesis is

selected by the AAFBF decreases (with the exception when the outliers reinforce the

support in the dat for the hypothesis, as explained previously). Depending on the true

hypothesis and type of violation, this decrease in performance can be quite dramatically.

For example, Table 4 showed that when in the population H1 : µ1 < µ2 < µ3 is true, the

proportion of datasets in which the AAFBF selects this hypothesis drops from .87 to .63

when the distribution changes from normal to heavy tailed. Additionally, Figure 4(a)

showed that when H1 is true in a normally distributed population but outliers appear in the

right tail of the distribution of the data in Group 1, the proportion of datasets in which the

AAFBF selects the true hypothesis drops from .89 with 0 outliers to .78 with only 1 outlier.

Secondly, the simulation study was designed to investigate if replacing the ordinary

non-robust sample mean estimates with robust sample trimmed mean estimates as input

for Bain, resulting in the AAFBFROB, leads to a Bayes factor that is less affected by

non-normality and outliers. Results showed that the AAFBFROB is indeed less affected by

non-normality and outliers. While the AAFBF outperformed the AAFBFROB when data

was (close to) normal, this only holds when the data contains zero outliers. Results showed

that with even one outlier, the AAFBFROB performs similar to or better than the AAFBF.

Moreover, the AAFBFROB outperforms the AAFBF when data is extremely skewed or

heavy tailed, as is the case in an estimated 50% of real datasets (Cain et al., 2016; Micceri,

1989).

The results of this paper suggest using the AAFBF when data is (close to) normally

distributed and contains no outliers. When the distribution of data is extremely skewed or

heavy tailed or when data contains outliers, results of this paper suggest using the

AAFBFROB instead. Decisions about what type of Bayes factors should be used should be

made prior to data inspection. This can be done by considering what type of distribution

can be expected. Some data types are naturally more often extremely skewed or heavy
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tailed. As shown in the example study, it is known that Likert type items often aren’t

normally distributed and are susceptible to outliers. Other examples of data in psychology

research susceptible to major violations of normality or outliers are reaction times, income

measures, psychometric measures, criterion measures and gain scores. These types of

arguments should lead a researcher to decide in favour of using either the AAFBF or the

AAFBFROB. Making this decision before data inspection ensures that the data is only used

once for the evaluation of the hypotheses and warrants against biased results due to

(questionable) use of researchers degrees of freedom. In fact, Wicherts et al. (2016) state in

their check-list to avoid p-hacking that decisions on how to deal with violations of

statistical assumptions and outliers should be made independent of the data that are used

to evaluate the hypotheses of interest.

Finally, it should be noted that while the AAFBFROB outperforms the AAFBF when

a datasets contains outliers or non-normality, results of this paper showed that its

performance is also affected. Overall, results showed that the AAFBFROB exhibited greater

stability than the AAFBF but less power. Hence, while using robust estimates as input for

Bain gives more reliable results than using non-robust estimates, one should keep in mind

that it is not the perfect solution. Researchers should be aware that non-normality and

outliers do influence results, even when robust statistics are used.

In the investigation of the robustness of the AAFBF and the AAFBFROB some

choices are made. Thefore, the simulations performed in this paper are not fully conclusive.

That is, other choices could be made with respect to distributions or outlying generating

mechanisms considered. Two examples of scenarios that are not investigated by this paper

are when data are sampled from populations with different (non-normal) distributions or

when outliers occur in more than one group. Moreover, violations of non-normality and

outliers in the same dataset are not investigated. Potentially, results for scenarios not

investigated in this paper differ somewhat from the results presented here. Nevertheless,

this paper provides a clear indication of the effect of non-normality and outliers on the
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AAFBF and situations in which it is advantageous to use the AAFBFROB instead.

Since the AAFBF is the first Bayes factor that only needs sample sizes, parameter

estimates and their variances as input, it provided a unique opportunity to investigate the

use of robust statistics for the computation of the Bayes factor. From this paper, it can be

concluded that in most situations, using robust statistics for the computation of the

AAFBF indeed leads to more reliable results. Moreover, the approach proposed by this

paper is easy to use for applied researchers because the R packages needed are readily

available and example code is contained in this paper.
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Table 1

Per population distribution corresponding g and h parameters and estimates of the

distribution’s mean µ, standard deviation σ, skewness S, and kurtosis K based on a sample

of size 10, 000, 000 .

Distribution g h µ σ S K

Normal 0.00 0.00 0.00 1.00 0.00 3.00

Moderately skewed 0.20 0.00 0.10 1.03 0.61 3.67

Extremely skewed 0.50 0.00 0.27 1.21 1.75 8.89

Heavy tailed 0.00 0.15 0.00 1.31 0.00 9.94
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Table 2

Simulation scenarios and corresponding group means.

Scenario µ1 µ2 µ3

H0 : µ1 = µ2 = µ3 is true 0.0000 0.0000 0.0000

H1 : µ1 < µ2 < µ3 is true 0.0000 0.3063 0.6126

Hu : µ1, µ2, µ3 is true 0.3063 0.0000 0.6126
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Table 3

Average deviation from zero (δ) and coverage probability of the 95% confidence interval

(CP) for sample mean ȳ and sample trimmed mean ȳt estimates of the mean of Group 1

under H0. Computed with 1, 000 simulated datasets.

δ CP

Distribution ȳ ȳt ȳ ȳt

Normal 0.00 0.00 0.97 0.98

Moderately skewed 0.11 0.03 0.89 0.97

Extremely skewed 0.27 0.07 0.57 0.95

Heavy tailed 0.01 0.00 0.97 0.98
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Table 4

Proportion of datasets in which each hypothesis had the largest posterior model probability

as a function of distribution, true hypothesis and type of AAFBF. Italic proportions

correspond to the true hypothesis.

H0 : µ1 = µ2 = µ3 is true

AAFBF AAFBFROB

Distribution H0 H1 Hu H0 H1 Hu

Normal 0.98 0.01 0.00 0.98 0.01 0.00

Moderately skewed 0.98 0.01 0.01 0.98 0.01 0.00

Extremely skewed 0.98 0.01 0.01 0.98 0.01 0.01

Heavy tailed 0.98 0.01 0.01 0.98 0.01 0.00

H1 : µ1 < µ2 < µ3 is true

AAFBF AAFBFROB

Distribution H0 H1 Hu H0 H1 Hu

Normal 0.13 0.87 0.00 0.20 0.79 0.00

Moderately skewed 0.16 0.84 0.00 0.21 0.78 0.00

Extremely skewed 0.30 0.69 0.01 0.24 0.75 0.00

Heavy tailed 0.36 0.63 0.01 0.25 0.75 0.00

Hu : µ1, µ2, µ3 is true

AAFBF AAFBFROB

Distribution H0 H1 Hu H0 H1 Hu

Normal 0.22 0.14 0.64 0.33 0.14 0.53

Moderately skewed 0.25 0.14 0.61 0.33 0.14 0.53

Extremely skewed 0.40 0.12 0.47 0.36 0.13 0.51

Heavy tailed 0.50 0.12 0.38 0.38 0.14 0.48
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Table 5

Simulation scenarios and corresponding group means for different effect sizes

f = 0.1 f = 0.4

Scenario µ1 µ2 µ3 µ1 µ2 µ3

H1 is true 0.0000 0.1225 0.2450 0.0000 0.4900 0.9800

Hu is true 0.1225 0.0000 0.2450 0.4900 0.0000 0.9800
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Table 6

Proportion of datasets in which each hypothesis has the largest posterior model probability

as a function of effect size, true hypothesis and type of AAFBF when sampling is from a

moderately skewed distribution. Italic proportions correspond to the true hypothesis.

H1 : µ1 < µ2 < µ3 is true

AAFBF AAFBFROB

Cohen’s f H0 H1 Hu H0 H1 Hu

f = 0.10 0.83 0.16 0.01 0.86 0.14 0.00

f = 0.25 0.16 0.84 0.00 0.21 0.78 0.00

f = 0.40 0.00 1.00 0.00 0.00 1.00 0.00

Hu : µ1, µ2, µ3 is true

AAFBF AAFBFROB

Cohen’s f H0 H1 Hu H0 H1 Hu

f = 0.10 0.89 0.05 0.06 0.90 0.05 0.05

f = 0.25 0.25 0.14 0.61 0.33 0.14 0.53

f = 0.40 0.00 0.03 0.96 0.01 0.04 0.95
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Table 7

Proportion of datasets in which each hypothesis has the largest posterior model probability

as a function of sample size, true hypothesis and type of AAFBF, when sampling is from

an extremely skewed distribution. Italic proportions correspond to the true hypothesis.

H0 : µ1 = µ2 = µ3 is true

AAFBF AAFBFROB

Nj H0 H1 Hu H0 H1 Hu

Nj = 30 0.96 0.02 0.02 0.96 0.02 0.02

Nj = 69 0.98 0.01 0.01 0.98 0.01 0.01

Nj = 100 0.99 0.01 0.00 0.98 0.01 0.01

H1 : µ1 < µ2 < µ3 is true

AAFBF AAFBFROB

Nj H0 H1 Hu H0 H1 Hu

Nj = 30 0.50 0.48 0.01 0.45 0.54 0.01

Nj = 69 0.30 0.69 0.01 0.24 0.75 0.00

Nj = 100 0.14 0.86 0.00 0.08 0.92 0.00

Hu : µ1, µ2, µ3 is true

AAFBF AAFBFROB

Nj H0 H1 Hu H0 H1 Hu

Nj = 30 0.63 0.11 0.26 0.58 0.13 0.30

Nj = 69 0.40 0.12 0.47 0.36 0.13 0.51

Nj = 100 0.24 0.13 0.63 0.16 0.12 0.71
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Table 8

Group sample size Nj, mean ȳj, standard deviation sj, and trimmed mean ȳtj
for the data

of Joy-Gaba et al. (2016).

j Nj ȳj sj ȳtj

Closeness Prime 46 5.72 1.22 5.93

Intermediate Prime 47 5.68 1.40 5.97

Distance Prime 40 5.93 1.38 6.25
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Table 9

Results from the analysis of data from Joy-Gaba et al. (2016) with the AAFBFROB.

Hypothesis AAFBFROB PMP

H0 32.80 0.97

H1 0.15 0.01

Hu . 0.03
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Figure 1 . Illustrations of (a) the influence function and (b) the breakdown point of the

sample mean compared with the 20% trimmed sample mean. The sample mean ȳ and

sample 20% trimmed mean ȳt are estimates of µ = 0 computed for a normally distributed,

standardized sample of size 65. The estimates are recalculated after (a) adding a single

data point varying between −10 and 10, and (b) replacing a proportion of randomly chosen

values of the original sample by an extremely outlying data point of 100.
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Figure 2 . Illustration of the shape of population distributions, based on a sample of size

10, 000, 000.
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Figure 3 . As a function of the number of outliers, (a) bias and (b) coverage probability of

the 95% confidence interval of the sample mean ȳ and sample trimmed mean ȳt when they

are used as estimates of the mean of Group 1 under H0.
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Figure 4 . Proportion of datasets in which each hypothesis is selected with the AAFBF

versus the AAFBFROB as a function of the number of outliers in (a) the right tail, and (b)

both tails of the distribution of the data in Group 1. Black lines represent the proportions

for the true hypothesis and grey lines for the other hypotheses under investigation.
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Appendix

R code and results example study

R code

# Load packages

library(readxl) # data loading

library(WRS2) # estimate of the trimmed mean standard error

library(Bain) # computation Bayes factor

# Load data

dat <- read_excel("WBdata.xls")

# Make condition a factor

dat$COND <- factor(dat$COND)

# Sample size per condition

ngroup <- table(dat$COND)

# Sample trimmed mean estimates per condition:

# Compute the 20% trimmed mean for parental bond

# given the condition

est <- c(mean(dat$PAR_BOND[dat$COND==1], tr = 0.2),

mean(dat$PAR_BOND[dat$COND==2], tr = 0.2),

mean(dat$PAR_BOND[dat$COND==3], tr = 0.2))

# Sample trimmed mean variance per condition:

# Compute the sample trimmed standard error for

# parental bond given the condition
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se <- c(trimse(dat$PAR_BOND[dat$COND==1]),

trimse(dat$PAR_BOND[dat$COND==2]),

trimse(dat$PAR_BOND[dat$COND==3]))

# Square the se to obtain the variance:

var <- se^2

# Store variances in a list, containing of matrices per group

var <- list(matrix(var[1]), matrix(var[2]), matrix(var[3]))

# Specify hypotheses

ERr1 <- matrix(c(1, -1, 0, 0, 0, 1, -1, 0), ncol = 4, byrow = T)

IRr1 <- matrix(0, 0, 0)

ERr2 <- matrix(0, 0, 0)

IRr2 <- matrix(c(1, -1, 0, 0, 0, 1, -1, 0), ncol = 4, byrow = T)

# Run Bain

res <- Bain(estimate = est, covariance = var, nspec = 1, njoint = 0,

samp = ngroup, ERr1, IRr1, ERr2, IRr2)

Results

Hypothesis testing result

f= f><|= c= c><|= f c BF1c PMPa PMPb

H1 1.118 1 0.034 1 1.118 0.034 32.795 0.995 0.965

H2 1 0.028 1 0.165 0.028 0.165 0.148 0.005 0.005

Hu . . . . . . . . 0.029


