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Abstract

The software package Bain can be used for the evaluation of informative hypotheses with

respect to the parameters of a wide range of statistical models. For pairs of hypotheses the

support in the data is quantified using the approximate adjusted fractional Bayes factor

(BF). Currently, the data have to come from one population or have to consist of samples

of equal size obtained from multiple populations. If samples of unequal size are obtained

from multiple populations, the BF can be shown to be inconsistent. In this paper it will be

elaborated how the approach implemented in Bain can be generalized such that multiple

population data can properly be processed. The resulting multiple population approximate

adjusted fractional Bayes factor (MBF) is implemented in the R package Bain.

Keywords: Bain, Bayes Factor, Informative Hypotheses, Multiple Populations
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Bayesian Evaluation of Informative Hypotheses for Multiple Populations

Introduction

This paper is the most recent addition to a sequence of papers in which an

alternative for null-hypothesis significance testing has been developed. Important

landmarks in this development were: Klugkist, Laudy, and Hoijtink (2005a) and Kuiper,

Klugkist, and Hoijtink (2010) who added order constrained hypotheses to the classical null

hypothesis and showed in the context of ANOVA models how these can be evaluated using

the Bayes factor (Kass and Raftery, 1995); Mulder, Hoijtink, and de Leeuw (2012) who

generalized the approach to Bayesian evaluation of informative hypotheses (Hoijtink,

2012), that is, hypotheses specified using equality and inequality (or order) constraints

among the parameters of multivariate normal linear models; Gu, Mulder, Dekovic, and

Hoijtink (2014) who developed a Bayes factor for the evaluation of inequality constrained

hypotheses in a rather wide range of statistical models; and, Mulder (2014) and Gu,

Mulder, and Hoijtink (2017), who generalized the latter Bayes factor into the approximate

adjusted fractional Bayes factor (AAFBF from now on abbreviated to BF) which can be

used to evaluate informative hypotheses for one population data for a wide range of

statistical models like normal linear models, logistic regression models, confirmatory factor

analyis, and structural equation models.1

The BF is simple to compute and the only input needed are estimates of the model

parameters, the corresponding covariance matrix, and the sample size. However, as will be

elaborated in this paper, the BF is inconsistent if samples of unequal size are obtained from

multiple populations (similar as O’Hagan’s , 1995, fractional Bayes factor as is shown by

De Santis and Spezzaferri, 2001). In this paper it will be elaborated how the approximate

adjusted fractional Bayes factor, i.e., BF, can be generalized into the multiple population

approximate adjusted fractional Bayes factor, i.e., MBF. This Bayes factor is simple to
1The interested reader is referred to http://informative-hypotheses.sites.uu.nl/ where all the

books, dissertations, papers, and software produced during the course of this development are presented.
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compute too, the only input needed are estimates of the model parameters, separate

estimates of the corresponding covariance matrix for each population, and the sample size

obtained from each population. As will be shown, the MBF is consistent and can therefore

be used for testing informative hypotheses with respect to multiple populations.

With the availability of the MBF (and corresponding software) researchers have a

viable alternative for null-hypothesis significance testing. In a wide range of statistical

models, the null-hypothesis can be replaced by informative hypotheses, and the p-values

can be replaced by the MBF. The recent and current critical appraisal of null-hypothesis

significance testing in the literature will not be reiterated here. However, the interested

reader is referred to Cohen (1994) who called the null-hypothesis the nill hypothesis

because he could not come up with research examples in which the null hypothesis might

be a realistic representation of the population of interest. This point of view was further

elaborated by Royal (1997, pp. 79-81) who claims that the null hypothesis cannot be true,

and consequently, that data are not needed in order to be able to reject it. However, the

interested reader is also referred to Wainer (1999) who highlights that there are situations

where, without dispute, the null hypothesis is relevant. Landmark papers criticizing the

use of p-values and significance levels are Ioannides (2005) and Wagenmakers (2007),

among others. The latter paper also motivates and illustrates the replacement of p-values

by Bayesian hypothesis testing using the BIC (Schwartz, 1987; Raftery, 1995). However,

the interested reader is also referred to the American Statistical Association’s statement on

p-values (Wasserstein and Lazar, 2016) which gives a to the point and balanced overview of

what can and can’t be done with p-values, and to Benjamin et al. (2018) who propose to

redefine statistical significance.

The focus of this paper is on the evaluation of informative hypotheses using Bayes

factor. Note that, model selection criteria like AIC and BIC (Schwartz, 1987; Raftery,

1995) cannot be used (Mulder, Klugkist, Meeus, van de Schoot, Selfhout, and Hoijtink,

2009, Section 3). The penalty for model complexity in both criteria is a function of the
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number of parameters in the model at hand. Since the number of parameters in an

unconstrained hypothesis, e.g. Hu : θ1, θ2, θ3 is the same as in a constrained hypothesis,

e.g., H1 : θ1 > θ2 > θ3, it does not reflect that H1 is more parsimonious than Hu. This

problem is solved by Kuiper and Hoijtink (2013) who present the GORIC wich is a

generalization of the AIC with a penalty term that does properly reflect that H1 is more

parsimonious than Hu. However, GORIC can only be applied in the context of the

multivariate normal linear model, while, as elaborated above, the range of application of

the (M)BF is not limited to the multivariate normal linear model.

Also, as is elaborated in Van de Schoot, Hoijtink, Romeijn, and Brugman (2012), the

penalty for model complexity used by the DIC (Spiegelhaler, Best, Carlin, and Van der

Linde, 2002) is also not suited too quantify how parsimonious an informative hypothesis is.

Using a modification of the loss function used by the DIC they obtain the PIC which in the

examples provided can be used to evaluate informative hypotheses. However, as was shown

by Mulder (2014) using the Bayes factor results in more desirable selection behavior when

testing constrained hypotheses than using the PIC.

Silvapulle and Sen (2004) show how, so-called, Type A testing problems (evaluating a

null-hypothesis against an informative hypothesis) and Type B testing problems

(evaluating an informative hypothesis against an unconstrained hypothesis) can be

evaluated using p-values in a wide range of statistical models. Those in favour of

null-hypothesis significance testing are well advised to consult this book and the R packages

restriktor and ic.infer. The main limitation of this approach is that it can not be used

to directly compare two competing informative hypotheses.

Stern (2005) proposes to use the posterior density of Hk for k = 1, ..., K to select the

best hypothesis. However, as is elaborated in Klugkist, Laudy, and Hoijtink (2005b), this

amounts to using fk to select the best hypothesis, that is, the complexity ck is ignored.

This will work if each hypothesis has the same complexity. However, if, for example, Hu is

compared to H1, irrespective of the data, Hu will always be preferred because it has by
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definition a larger fit than H1 (cf. Equation 7).

This paper starts with an introduction of the BF and, using a simple two group

setup, it will be shown and illustrated that it may show inconsistent behavior if samples of

unequal size are obtained from multiple populations. Subsequently, the BF will be

generalized into the MBF and, using the same two group setup, it will be shown and

illustrated that the MBF does not show inconsistent behavior if samples of unequal size are

obtained from multiple populations. Further illustrations of the approach proposed in the

context of an analysis of covariance model and a logistic regression analysis will be

provided. Illustrations are executed using the R package2 Bain3. The R codes and data

used in this paper can be found at the bottom of the Bain website (click on the title of this

paper). The paper is concluded with a short discussion and contains an Appendix with a

further discussion of the consistency of the MBF.

The Approximate Adjusted Fractional Bayes Factor

Consider a model where θ is a vector of length J containing the structural

parameters, and ω a scalar, vector, or matrix containing the nuisance parameters.

Hypotheses can be formalized as:

Hk : Skθ = sk, Rkθ > rk, for k = 1, ..., K, (1)

where Sk is a pk × J matrix imposing pk equality constraints on θ, Rk is a qk × J matrix

imposing qk inequality constraints, and sk and rk are vectors containing constants of size pk

and qk, respectively. Additionally of interest is the unconstrained hypothesis Hu : θ, that

is, a hypothesis without constraints on the parameters θ. As will be elaborated below, this

hypothesis has a central role in the computation of the Bayes factor.

Mulder (2014), Gu, Mulder, Dekovic, and Hoijtink (2014), Gu (2016), and Gu,

Mulder, and Hoijtink (2017) show that the relative support in the data for Hk and Hu can
2https://www.r-project.org/
3https://informative-hypotheses.sites.uu.nl/software/bain/
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be quantified using the approximate adjusted fractional Bayes factor:

BFku = fk
ck
, (2)

that is the ratio of the fit and the complexity of Hk relative to Hu. The interested reader

should consult the references given for the derivation of Equation 2 from the ratio of the

marginal likelihoods of Hk and Hu. The Bayes factor from Equation 2 is a quantification of

the relative support in the data for Hk against Hu. If, for example, BFku = 5, the support

in the data is five times larger for Hk than for Hu. It will now be elaborated how the BF

can be computed and why it is called the approximate adjusted frational Bayes factor. It

will also be highlighted that the BF is a member of the family of Bayes factors based on

encompassing priors (Klugkist, Kato, and Hoijtink, 2005; Wetzels, Grasman, and

Wagenmakers, 2010), that is, Bayes factors for which the prior distribution of the model

parameters under Hk is derived from the prior distribution under Hu.

Before providing the formulas for fk and ck, it has to be highlighted that the density

of the data can be factored according to O’Hagan (1995) as:

p(Y | θ,ω,X) = p(Y | θ,ω,X)1−bp(Y | θ,ω,X)b, (3)

where, Y denotes the data that are modeled (e.g., the dependent variable in a multiple

regression) and X the data that are not modeled and considered to be fixed (e.g., the

predictor variables in a multiple regression). The idea of fractional Bayes factors is to use a

fraction b of the information in the likelihood function to specify the prior distribution.

Usually the fraction b is chosen such that it corresponds to the size of a minimal training

sample (Berger and Pericchi, 1996, 2004). For the evaluation of informative hypotheses we

implemented in the R package Bain b = J∗/N , where J∗ denotes the number of

independent constraints in [S1, R1, ..., SK , RK ] and N the sample size. This choice can be

illustrated using a simple example. If H1 : θ1 > θ2 > θ3 and H2 : θ1 = θ2 = θ3, the number

of independent constraints J∗ = 2, that is, there are two underlying parameters that are

combinations of the target parameters with respect to which hypotheses are formulated:
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θ1 − θ2 and θ2 − θ3. Our choice is motivated by the fact that in the normal linear model,

the minimal training sample needed to obtain a proper posterior distribution is equal to

the number of parameters. If, for example, a variable is modeled using a normal

distribution with unknown mean µ and variance σ2, the minimum training sample needed

to obtain a proper posterior based on the prior h(µ, σ2) = 1/σ2 is two (c.f., Berger and

Pericchi, 2004, Example 1). If, a variable is a linear combination of two predictors with

normal error, there are four parameters (intercept, two regression coefficients, residual

variance) and, consequently, the minimum training sample equals four.

Gu, Mulder, Dekovic, and Hoijtink (2014), Gu (2016), and Gu, Mulder, and Hoijtink

(2017) show that based on Equation 3 and an improper uniform prior for θ, a large sample

approximation (see, Gelman, et al., 2013, Chapter 4) of the posterior distribution of θ

under Hu can be obtained:

gu(θ | Y ,X) ≈ N (θ̂, Σ̂θ), (4)

where θ̂ denotes the maximum likelihood estimate of θ and Σ̂θ the corresponding

covariance matrix. Note that, the "approximate" in the name approximate adjusted

fractional Bayes factor reflects that for its computation a normal approximation of the

posterior distribution is used. An implication of the approximation is that the BF can only

be used if a normal approximation to the posterior distribution of θ is reasonable. If the

sample size is not too small (see below), this is the case with unbounded parameters like

means and regression coefficients as they appear in generalized linear models and structural

equation models. This is also the case for the fixed regression coefficients (the random

effect would be treated as nuisance parameters) in, for example, two level models. In the

latter case, the sample size used is the number of level two units (and not the number of

observations of the dependent variable). This is not necessarily the case with naturally

bounded parameters like variances (naturally bounded to be larger than zero) and

probabilities (naturally bounded between zero and one), although even there, if the sample

size is large, a normal approximation of the posterior distribution may be accurate. The
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interested reader is referred to Gu, Mulder, Dekovic, and Hoijtink (2014) who show that for

the evaluation of inequality constrained hypotheses in the context of a multiple regression

with two predictors, the difference between the approximate BF implemented in Bain and

the corresponding non-approximate BF implemented in Biems (Mulder, Hoijtink, and de

Leeuw, 2012) is negligible if the sample size is at least 20. They also show that inequality

constrained hypotheses with respect to the probabilities in a two by two contingency table

render an approximate BF that is very similar the the non-approximate BF presented by

Klugkist, Laudy, and Hoijtink, (2010), if the sample size is at least 40. Although these

results give confidence in the performance of the approximate adjusted fractional Bayes

factor, further research in the context of different models is needed in order to fortify these

results.

The prior distribution of θ has a covariance matrix which is based on a fraction b of

the information in Equation 3 and a mean

θB ∈ {SkθB = sk, RkθB = rk} for k = 1, ..., K, (5)

that is, θB denotes a value of θ on the boundary of all the hypotheses under investigation

(Mulder, 2014):

hu(θ | [Y ,X]b) = N (θB, Σ̂θ/b), (6)

where, [Y ,X]b stresses that the prior distribution is based on a fraction b of the

information in the data. Note that, θB is called the adjusted mean (Mulder, 2014) of the

prior distribution, which explains the "adjusted" in the name approximate adjusted

fractional Bayes factor. As was shown by Mulder (2014), if, for example, H1 : θ > 0 is

compared with Hu : θ, it holds that the more the data support H1 the smaller the support

in the fractional Bayes factor for H1! This phenomenon is addressed if the adjusted

fractional Bayes factor is used, that is, if the prior mean is in agreement with Equation 5,

it holds that the more the data are in agreement with H1 the larger the support in the

adjusted fractional Bayes factor for H1 (see, Mulder, 2014, for further elaborations). Note
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furthermore, that hu(θ | .) is a so-called encompassing prior, that is, the prior distribution

of θ under Hk is proportional to hu(θ | .)Iθ∈Hk
, where the indicator function is 1 if the

argument is true and 0 otherwise (Klugkist, Kato, and Hoijtink, 2005; Wetzels, Grasman,

and Wagenmakers, 2010).

There are situations in which there is no solution to Equation 5. For example, if

hypotheses are specified using range constraints, e.g., H1 : |θ| < .2, that is,

H1 : θ > −.2, θ < .2, there is no solution. Bain addresses this problem in the following

manner: in Equation 5 (and only in this equation) this (part of an) hypothesis is

represented as H1 : θ = 0, that is, θB will be equal to the midpoint of the range specified.

The rational is that H1 essentially implies that θ ≈ 0. Another example is given by the

hypotheses H1 : θ = 0 and H2 : θ > 2. Although each of these hypotheses can be evaluated

by itself, they can not be compared using the approximate adjusted fractional Bayes factor

because there is no solution to Equation 5, that is, both hypotheses are not compatible

because hu(.) is different for each hypothesis (Hoijtink, 2012, Section 9.9.2.1.). Testing

non-compatible hypotheses can be done using BIEMS (Mulder et al., 2012) by instructing

the program to use the same unconstrained prior for each of the hypotheses under

consideration.

Based on Equations 4 and 6 the relative fit and complexity from Equation 2 are

defined as

fk =
∫
θ∈Hk

gu(θ | Y ,X)dθ ≈
∫
θ∈Hk

N (θ | θ̂, Σ̂θ)dθ, (7)

and

ck =
∫
θ∈Hk

hu(θ | [Y ,X]b)dθ =
∫
θ∈Hk

N (θ | θB, Σ̂θ/b)dθ, (8)

respectively. The interested reader is referred to Gu (2016, Chapter 3) for the algorithms

with which the fit and complexity are computed. The strength of the BF lies in its

simplicity. Its computation is based only on maximum likelihood estimates and the

corresponding asymptotic covariance matrix, and the choice of the fraction b, which is

completely determined by the sample size N and the number of independent constraints J∗.
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The approximate adjusted fractional Bayes factor, also in the paragraphs that follow

abbreviated as BF, falls in the category of default, automatic, or pseudo Bayes factors

because no priors have to be manually specified. Instead, the prior is automatically

constructed using a small fraction of the data, while the remaining fraction is used for

hypothesis testing, similar as the fractional Bayes factor (O’Hagan, 1995). The BF is

coherent in the sense that BFuk = 1/BFuk and BFkk′ = BFku/BFk′u (O’Hagan, 1997,

Sections 3.1 and 3.2). Note that these coherency properties not necessarily hold for other

default Bayes factors (O’Hagan, 1997; Robert, 2007, p. 240).

As further noted by Robert (2007, p. 242), a potential issue of the fractional Bayes

factor, and therefore also of the BF in Equation 2, is that there is no clear-cut procedure to

choose the fraction b. We believe however that the use of a minimal fraction is reasonable

as it results in a minimally informative default prior while maximal information in the data

is used for hypothesis testing (Berger & Mortera, 1995). Furthermore it has been shown

that this choice results in consistent testing behavior (O’Hagan, 1995; Mulder, 2014).

Nevertheless, further research about the choice of b would fortify the approach we present

in this paper. The interested reader is referred to Gu, Hoijtink, and Mulder (2016), for one

evaluation of the choice of b. Another potential issue highlighted by Robert is that default

Bayes factors can be computationally intensive (Robert, 2007, p. 242). The BF procedure

that is proposed here however is very easy to compute: only the maximum likelihood

estimates, error covariance matrix and sample size are needed (Gu et al., 2017).

Finally it is important to note that default Bayes factors may behave as ordinary

Bayes factors based on on so-called intrinsic priors (Berger & Pericchi, 1996). Currently

however intrinsic priors have not yet been explored for the BF. Although this too is a topic

worthy of further research, from a pragmatic point of view it is more important to know

whether the BF is consistent, that is, whether the support for the true hypothesis goes to

infinity when the sample size grows to infinity. According to O’Hagan (1997, Section 2.1) if

hypotheses are nested (in the cases we consider all hypotheses are nested within Hu) and if
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b→ 0 if N →∞ (which holds for our b), the fractional Bayes factor is consistent. However,

De Santis and Spezzaferi (2001) show that the fractional Bayes factor may show

inconsistent behavior if data from multiple populations are sampled. Similarly, as shown in

the next section, the BF is also inconsistent if the data are sampled from multiple

populations. In line with the solution proposed by De Santis and Spezzaferri (2001) for the

fractional Bayes factor, the MBF is an extension of the BF that is consistent when testing

hypotheses in the case of multiple populations.

Consistency of the Approximate Adjusted Fractional Bayes Factor

When discussing consistency of the (M)BF this will be done in terms of (M)BFku if

Hk is specified using only equality constraints. In this case a Bayes factor is called

consistent if (M)BFku →∞ (or 0) when Hk (or Hu) is true and Ng →∞ with the same

rate for all g = 1, . . . , G. If Hk is specified using only inequality constraints, this will be

done in terms of (M)BFkc, where Hc : not Hk, that is the complement of Hk. In this

situation, a Bayes factor is called consistent if BFkc →∞ (or 0) when Hk (or Hc) is true,

as Ng →∞ with the same rate for all g = 1, . . . , G. Both scenarios imply that the G

populations are treated as one population from which a sample of increasing size

(proportionally increasing the sample sizes from each of the G populations) is taken. Note

that BFkc = BFku

BFcu
, where the numerator and denominator can be computed using Equation

2. Note furthermore, that for hypotheses specified using only equality constraints Hu = Hc.

When BFku 9∞ or BFkc 9∞ for the same limit, the Bayes factor is called

inconsistent. Another form of inconsistency that will be considered in this paper is whether

(M)BFku →∞ or 0, and, (M)BFkc →∞ or 0, as Ng →∞ for some populations but not all

G populations. This situation applies if a sample of increasing size if obtained from some of

the G populations whilst the sample size from the other populations remains fixed. De

Santis and Spezzaferri (2001) showed for this limit that the fractional Bayes factor

(O’Hagan, 1995) is inconsistent. In this section it will be illustrated, in line with De Santis
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and Spezzaferri (2001), that the same holds for the BF. In the next section the MBF will

be introduced, which can be seen as an extension of the BF to multiple populations which

avoids this form of inconsistency.

Example 1: Comparison of Two Independent Means. Consider the following simple

model:

yi = θ1D1i + θ2D2i + εi with εi ∼ N (0, ω), (9)

where D1i equals 1 for i = 1, ..., N1 and 0 otherwise, D2i equals 1 for i = N1 + 1, ..., N1 +N2

and 0 otherwise (and, consequently, θ1 and θ2 denote the means in Group 1 and Group 2,

respectively, and ω the residual variance), and N1 and N2 denote the sample sizes of

Groups 1 and 2, respectively, with N = N1 +N2. Connecting this notation to that of the

previous section renders: Y = y and X = [D1,D2].

Consider testing of H1 : θ1 = θ2 versus Hc : θ1 6= θ2. Note that the marginal likelihood

of Hc is equal to the marginal likelihood of the unconstrained hypothesis Hu : θ1, θ2 because

θ1 = θ2 has zero probability assuming a bivariate normal prior for θ1, θ2 under Hu. For the

exposition that follows we aribitrarily assume that ω̂ = 1. The approximated unconstrained

posterior and prior distribution of θ1 and θ2 from Equations 4 and 6 are then given by

gu(θ1, θ2 | y,D1,D2) ≈ N


 θ̂1

θ̂2

 ,
 1/N1 0

0 1/N2


 , (10)

and

hu(θ1, θ2 | [y,D1,D2]b) = N


 0

0

 ,
 1/b× 1/N1 0

0 1/b× 1/N2


 , (11)

respectively, where b = J∗/N = 1/N . Note that, with respect to H1, the prior means for θ

are in agreement with Equation 5.

If we write δ = θ1 − θ2, then the BF is given by the Savage-Dickey density ratio

(Dickey, 1971; Mulder et al., 2010; Wetzels et al., 2010)

BF1u = f1

c1
= gu(δ = 0 | y,D1,D2)
hu(δ = 0 | [y,D1,D2]b) = N (0 | δ̂, N−1

1 +N−1
2 )

N (0 | 0, (N1 +N2)(N−1
1 +N−1

2 ))
.
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.

Lets us first of all consider the situation in which N1 and N2 go to ∞ with the same

rate, that is, let Ng = agn, for some positive constant ag, g = 1 or 2 and let n→∞. If

δ̂ = 0, then

f1 = N (0 | 0, N−1
1 +N−1

2 )→∞, (12)

if n→∞ and

c1 = N (0 | 0, (N1 +N2)(N−1
1 +N−1

2 ) = N (0 | 0, (a1 + a2)(a−1
1 + a−1

2 ), (13)

which is a constant independent of n. Equations 12 and 13 imply that BF1u →∞ if

n→∞ which is consistent. If δ̂ 6= 0,

f1 = N (0 | δ̂, N−1
1 +N−1

2 )→ 0, (14)

if n→∞ and c1 remains as in Equation 13. This implies that BF1u → 0 if n→∞ which is

consistent.

Now if we fix N1 and let N2 →∞, then in the limit Equation 14 reduces to:

f1 = N (0 | δ̂, N−1
1 ), (15)

and the middle part of Equation 13 reduces to

c1 = N (0 | 0,∞)→ 0, (16)

if n→∞. This implies that in the limit BF1u →∞ also if Hu is true, which is inconsistent

behavior.

To get more insight about the (in)consistency, the BF was computed for various

numerical examples in Tables 1, 2, and 3. In the case of support for H0 we set θ̂1 = 0 and

θ̂2 = 0, and in the case of support for Hu we set θ̂1 = −.35 and θ̂2 = .35. In both situations

we again let σ̂2 = 1. As can be seen in Table 1, when N1 = N2 and both increase with the

same rate, BF1u →∞ if H1 is true and BF1u → 0 if Hu is true, that is, the Bayes factor
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shows consistent behavior. Table 2 shows that BF1u also shows consistent behavior if both

sample sizes increase at the same rate if N1 6= N2. However, as can be seen in Table 3, if

there is support for H1, BF1u increases if N2 increases while N1 remains fixed, but if there

is support in the data for Hu, BF1u at first decreases but then starts to increase, which

implies that the evidence accumulates in the wrong direction. As N2 keeps increasing BF1u

goes to infinity as shown above. This is a simple illustration of inconsistent behavior of the

BF where multiple populations are considered while the sample size does not increase for

all populations. De Santis and Spezzaferri (2001) show that this behavior can also be

observed for the fractional Bayes factor. The problem is caused by the fact that the prior

variances of θ1 and θ2 are dependent on the sample sizes in both groups because b = 1/N

(Table 3). As N2 increases, the fraction that is used to construct the default prior for θ1

also goes to zero even though the sample size of Group 2 does not increase. This

undesirable property can be avoided using population specific fractions in line with Iwaki

(1997), Berger and Pericchi (1998), De Santis and Spezzaferri (1999,2001), and Mulder

(2014). In the remainder of this paper it will be elaborated how this can be done for the

BF to obtain the MBF for multiple populations. �

The Approximate Adjusted Fractional Bayes Factor for Multiple Populations

In this section MBF will be introduced. The developments will be illustrated using

the comparison of two independent means. Let g = 1, ..., G where G denotes the number of

groups and Ng the corresponding sample sizes. Let θ = [θ1, ...,θg, ...,θG,η], where θg

denotes the structural parameters that are unique to Group g and η the structural

parameters that are shared by all the groups. Then, in line with De Santis and Spezzaferri

(2001), the density of the data of the multiple population model can be factored as:

p(Y 1, ...,Y G | θ1, ...,θG,η,ω,X1, ...,XG) =

G∏
g=1

pg(Y g | θg,η,ω,Xg)1−bgpg(Y g | θg,η,ω,Xg)bg , (17)
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where bg denotes the fraction of the information in the likelihood for Population g that will

be used for the specification of the prior distribution.

Example 1: Continued. The following notation will be used to denote which parts of

the data belong to Groups 1 and 2. The subscripts 1 and 2 in y1,y2, denote data sampled

from populations 1 and 2, respectively. Analogously, the second subscript in D11,D12, and

D21,D22, denotes data from populations 1 and 2, respectively. Using this notation, the

density of the data for the comparison of two independent means can be factored as:

p(y1,y2 | θ1, θ2, σ
2,D11,D12,D21,D22) =

p(y1 | θ1, σ
2,D11,D21)1−b1f(y1 | θ1, σ

2,D11,D21)b1×

p(y2 | θ2, σ
2,D12,D22)1−b2f(y2 | θ2, σ

2,D12,D22)b2 ∝

N1∏
i=1

exp(−1
2

(yi − θ1)2

σ2/(1− b1))
N1∏
i=1

exp(−1
2

(yi − θ1)2

σ2/b1
)×

N1+N2∏
i=N1+1

exp(−1
2

(yi − θ2)2

σ2/(1− b2))
N1+N2∏
i=N1+1

exp(−1
2

(yi − θ2)2

σ2/b2
). (18)

�

The covariance matrix of the parameters in Equation 17 can be obtained as a

function of the observed or expected Fisher information matrix (the interested reader is

referred to Efron and Hinkley, 1978, for an elaboration of the relative (dis)advantages of

both types of information). Using the observed Fisher information this leads to

Σ̂θ,η,ω =



Σ̂θ1 ... Σ̂θ1,θG
Σ̂θ1,η Σ̂θ1,ω

... ... ... ... ...

Σ̂θ1,θG
... Σ̂θG

Σ̂θG,η Σ̂θG,ω

Σ̂θ1,η ... Σ̂θG,η Σ̂η Σ̂η,ω

Σ̂θ1,ω ... Σ̂θG,ω Σ̂η,ω Σ̂ω


=
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−1×



∂2 log p(.)
∂θ1∂θ1

0 0 ∂2 log p(.)
∂θ1∂η

∂2 log p(.)
∂θ1∂ω

0 ... 0 ... ...

0 0 ∂2 log p(.)
∂θG∂θG

∂2 log p(.)
∂θG∂η

∂2 log p(.)
∂θG∂ω

∂2 log p(.)
∂θ1∂η

... ∂2 log p(.)
∂θG∂η

∂2 log p(.)
∂η∂η

∂2 log p(.)
∂η∂ω

∂2 log p(.)
∂θ1∂ω

... ∂2 log p(.)
∂θG∂ω

∂2 log p(.)
∂η∂ω

∂2 log p(.)
∂ω∂ω



−1

=

−1×



∂2 log p1(.)
∂θ1∂θ1

0 0 ∂2 log p1(.)
∂θ1∂η

∂2 log p(.)
∂θ1∂ω

0 ... 0 ... ...

0 0 ∂2 log pG(.)
∂θG∂θG

∂2 log pG(.)
∂θG∂η

∂2 log p(.)
∂θG∂ω

∂2 log p1(.)
∂θ1∂η

... ∂2 log pG(.)
∂θG∂η

∂2 log p1(.)
∂η∂η

+ ...+ ∂2 log pG(.)
∂η∂η

∂2 log p1(.)
∂η∂ω

+ ...+ ∂2 log pG(.)
∂η∂ω

∂2 log p(.)
∂θ1∂ω

... ∂2 log p(.)
∂θG∂ω

∂2 log p1(.)
∂η∂ω

+ ...+ ∂2 log pG(.)
∂η∂ω

∂2 log p1(.)
∂ω∂ω

+ ...+ ∂2 log pG(.)
∂ω∂ω



−1

,

(19)

where each second order derivative is be evaluated using [θ̂, η̂, ω̂], that is, the

unconstrained maximum likelihood estimates of the model parameters obtained using the

full density of the data from Equation 17. If the expected Fisher information is used, the

expected value of each entry in the last part of Equation 19 has to be taken. The

corresponding normal approximation of the posterior distribution of the structural

parameters is

gu(θ1, ...,θG,η | Y 1, ...,Y G,X1, ...,XG) ≈ N ([θ̂1, ..., θ̂G, η̂], Σ̂θ,η), (20)

that is, the multiple population counterpart of Equation 4.

Note that, Σ̂θ,η can be constructed using the observed Fisher information matrix for

the parameters of each group:

Σ̂θg ,η,ω = −1×


∂2 log pg(.)
∂θg∂θg

∂2 log pg(.)
∂θg∂η

∂2 log pg(.)
∂θg∂ω

∂2 log pg(.)
∂θg∂η

∂2 log pg(.)
∂η∂η

∂2 log pg(.)
∂η∂ω

∂2 log pg(.)
∂θg∂ω

∂2 log pg(.)
∂η∂ω

∂2 log pg(.)
∂ω∂ω



−1

, for g = 1, ..., G, (21)

where each second order derivative is be evaluated using θ̂, η̂, ω̂, that is, the maximum

likelihood estimates of the model parameters obtained using the full density of the data
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displayed in Equation 17, that is, not only using the data for Group g. Analogously,

Equation 21 can be replaced by the corresponding expected Fisher information matrix.

Comparing Equation 21 for g = 1, ..., G to Equation 19 shows that the former contains all

the elements needed to construct the latter. This is important since the input for Bain

consists of the covariance matrices per group from which Bain constructs the overall

covariance matrix. As will be elaborated in the next paragraph, these group specific

covariance matrices are needed in order to be able to construct the prior distribution based

on a fraction bg of the information of the data in each group.

Once Σ̂θg ,η,ω for g = 1, ..., G has been obtained it is straightforward to obtain the

multiple population counterpart of the prior distribution displayed in Equation 6 which is

based on a covariance matrix using a fraction bg of the information in Y g,Xg for

g = 1, ..., G (see, Equation 17). Using the mathematical rule that

∂2 log p(v, w)u∂v∂w = u∂2 log p(v, w)∂v∂w, it can be seen that:

Σ̂
bg

θg ,η,ω = −1×


∂2 log pg(.)
∂θg∂θg

bg ∂2 log pg(.)
∂θg∂η

bg ∂2 log pg(.)
∂θg∂ω

bg

∂2 log pg(.)
∂θg∂η

bg ∂2 log pg(.)
∂η∂η

bg ∂2 log pg(.)
∂η∂ω

bg

∂2 log pg(.)
∂θg∂ω

bg ∂2 log pg(.)
∂η∂ω

bg ∂2 log pg(.)
∂ω∂ω

bg



−1

=

−1×


bg
∂2 log pg(.)
∂θg∂θg

bg
∂2 log pg(.)
∂θg∂η

bg
∂2 log pg(.)
∂θg∂ω

bg
∂2 log pg(.)
∂θg∂η

bg
∂2 log pg(.)
∂η∂η

bg
∂2 log pg(.)
∂η∂ω

bg
∂2 log pg(.)
∂θg∂ω

bg
∂2 log pg(.)
∂η∂ω

bg
∂2 log pg(.)
∂ω∂ω



−1

. (22)

Reassembling these matrices (cf. Equation 19) renders:

Σ̂
b

θ,η,ω =

−1×



b1
∂2 log p1(.)
∂θ1∂θ1

0 0 b1
∂2 log p1(.)
∂θ1∂η

b1
∂2 log p(.)
∂θ1∂ω

0 ... 0 ... ...

0 0 bG
∂2 log pG(.)
∂θG∂θG

bG
∂2 log pG(.)
∂θG∂η

bG
∂2 log p(.)
∂θG∂ω

b1
∂2 log p1(.)
∂θ1∂η

... bG
∂2 log pG(.)
∂θG∂η

b1
∂2 log p1(.)
∂η∂η

+ ...+ bG
∂2 log pG(.)

∂η∂η
b1
∂2 log p1(.)
∂η∂ω

+ ...+ bG
∂2 log pG(.)
∂η∂ω

b1
∂2 log p(.)
∂θ1∂ω

... bG
∂2 log p(.)
∂θG∂ω

b1
∂2 log p1(.)
∂η∂ω

+ ...+ bG
∂2 log pG(.)
∂η∂ω

b1
∂2 log p1(.)
∂ω∂ω

+ ...+ bG
∂2 log pG(.)
∂ω∂ω



−1

,

(23)
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where, Σ̂
b

θ,η,ω denotes a covariance matrix based on fractions b = [b1, ..., bG] of the

information in the data, rendering the multiple population adjusted fractional prior

distribution of the structural parameters

hu(θ1, ...,θG,η | [Y 1, ...,Y G,X1, ...,XG]b) =

N ([θB,1, ...,θB,G,ηB], Σ̂b

θ,η). (24)

Note that, [...]b in Equation 24 denotes a prior distribution based on fractions b of the

information in the data. It can be interpreted as a default prior that contains the

information of group specific data fractions, bg, for the parameters of interest. Note

furthermore that, the subscript B in θB,1, ...,θB,G,ηB highlights that the prior means of

the structural parameters are in agreement with Equation 5, that is, centered on the

boundary of the hypotheses specified.

The MBF is the counterpart of BF in Equation 2 based on the multiple population

posterior and prior distributions displayed in Equations 20 and 24:

MBFku =
∫
θ∈Hk

gu(θ | Y 1, ...,Y G,X1, ...,XG)dθ∫
θ∈Hk

hu(θ | [Y 1, ...,Y G,X1, ...,XG]b)dθ
≈

∫
θ∈Hk
N (θ | θ̂, Σ̂θ)dθ∫

θ∈Hk
N (θ | θB, Σ̂

b

θ)dθ
= fk
ck
. (25)

Example 1: Continued. Estimates of θ1, θ2, σ
2 are easy to obtain. It is well known that

using the expected Fisher information the counterpart of Equation 20 for the example at

hand is

Σ̂θg ,σ2 =

 σ̂2/Ng 0

0 −1× E(d
2 log f(.)
∂σ2∂σ2 )−1

 , (26)

from which, using Equation 19, it is straightforward to obtain that

Σ̂θ1,θ2 =

 σ̂2/N1 0

0 σ̂2/N2

 . (27)
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The counterpart of Equation 24 for the example at hand has θB = [0, 0] and, applying

Equation 23

Σ̂
b
θ1,θ2 =

 σ̂2/b1 × 1/N1 0

0 σ̂2/b2 × 1/N2

 . (28)

�

With respect to the computation of Equation 21 three situations can be distinguished:

Situation 1: The multivariate normal linear model with group specific and joint

parameters. In the multivariate normal linear model there are z = 1, ..., Z dependent

variables and p = 1, ..., P predictors with regression coefficients βpz (where the predictor

attached to a possible intercept is a column of ones):

y1i = β11x1i + ...+ βP1xPi + ε1i

...

yzi = β1zx1i + ...+ βPzxPi + εzi, (29)

...

yZi = β1Zx1i + ...+ βPZxPi + εZi

where ε1i, ..., εZi ∼ N ([0, ..., 0],Ω). Multiple populations arise if two or more of the

predictors are used to create groups. Two groups with group specific intercepts are created

if, for example, x1i = 1 if person i is a member of Group 1 and 0 otherwise and x2i = 1 if

person i is a member of Group 2 and 0 otherwise. Group specific regression coefficients can

additionally be obtained if, for example, x3i = x∗ix1i and x4i = x∗ix2i (where x∗i denotes a

continuous predictor for which group specific regression coefficients are required), that is,

the predictor x3i gets a regression coefficient β3z in Group 1 and β4z in Group 2. With

Z = 1 the model could be:

yi = β1 + β3x3i + εi, (30)
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for Group 1, and

yi = β2 + β4x3i + εi, (31)

for Group 2 and εi ∼ N (0, σ2).

For the multivariate normal linear model,

Σ̂θg ,η = ω̂ ⊗ [X t
gXg]−1, (32)

where θg contains all the group specific coefficients, η contains the joint coefficients, ω is a

matrix containing the covariance matrix of the residuals, and all the data for the predictors

for Group g is collected in Xg. Using Equation 1, hypotheses with respect to the structural

parameters θ = vec(B), where B is a Z × P matrix containing the regression coefficients

βpz, can be formulated. Later in this paper an analysis of covariance model will be used in

Example 2 to illustrate Situation 1. Note that, the R function lm can be used to estimate

the parameters of the multivariate normal linear model.

Situation 2: Models with only group specific parameters. When all of the parameters

(including ω) in the density of the data are group specific, the covariance matrix in

Equation 19 will be block diagonal with one block for each group. Consequently, it is

straightforward to use R packages tailored to the statistical model of interest to obtain

estimates θ̂g for, g = 1, ..., G and, for each group, corresponding covariance matrix Σ̂θg
.

Note that, this does not apply to the example given under Situation 1 (Equations 30 and

31) because σ2 was not group specific. This would have applied if in addition to the

intercept and regression coefficient σ2 would have been group specific too.

Situation 3: All other situations. In all other situations R packages can be used to

obtain the estimates θ̂, η̂, ω̂, but the equations rendering Σ̂θg ,η,ω based on θ̂, η̂, ω̂ and

Y g,Xg for g = 1, ..., G will either have to be programmed in R or obtained through the use

of R packages like numDeriv which provides numerical approximations of second order

derivatives based on the log density of the data of the statistical model of interest. Later in

this paper a logistic regression will be used in Example 3 to illustrate this situation. For
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users with limited experience in statistical modeling and R, the third situation will be

difficult to handle: the likelihood function of the statistical model at hand has to be

formulated and numDeriv has to be used to estimate the covariance matrix per group (and

not the overall covariance matrix) using the overall groups estimates of the model

parameters. Currently, one annotated example (a logistic regression model) is provided at

the Bain website. Users requiring support in the context of other models can send an e-mail

to the first author of this paper with the request to add additional examples to the website.

Choosing bg

In the case of one population based on Gu, Mulder, and Hoijtink (2017) the R

package Bain uses b = J∗/N . The remaining question is how to choose bg for g = 1, ..., G in

the case of multiple populations. If the size of the sample obtained from each population is

the same, it should not matter whether BFku or MBFku is used, that is, it should hold that

BFku = MBFku. Computation of the covariance matrix displayed in Equation 23 in the

situation that N1 = ... = NG can be done using b1 = ... = bG = b. Applying this to the one

but last diagonal entry of the covariance matrix renders:

b1
∂2 log p1(.)
∂η∂η

+ ...+ bG
∂2 log pG(.)
∂η∂η

= b
∂2 log p1(.)
∂η∂η

+ ...+ b
∂2 log pG(.)
∂η∂η

=

b(∂
2 log p1(.)
∂η∂η

+ ...+ ∂2 log pG(.)
∂η∂η

) = b
∂2 log p(.)
∂η∂η

, (33)

with b = J∗

N1+...+NG
= 1

G
× J∗ × G

N1+...+NG
. Therefore a reasonable choice is

bg = 1
G
× J∗ × 1

Ng

. (34)

This choice abides the concept of a minimal fraction from each population to construct an

implicit default prior.
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Consistency of the Multiple Population Approximate Adjusted Fractional

Bayes Factor

De Santis and Spezzaferri (2001) show that their generalized fractional Bayes factor is

consistent if N →∞, that is, if the Ng’s increase at the same rate (cf. De Santis and

Spezzaferri, 2001, Theorem 4.1). Below it will be illustrated, via a continuation of Example

1, that the same holds for the MBF, that is, if Ng →∞, for all g with the same rate,

MBFku →∞ (or 0) when Hk (or Hu) is true. A more general discussion of the consistency

of the MBF is given in the Appendix. The example below also shows that the MBF avoids

the inconsistent behavior shown by the BF when fixing the sample size of one population

while letting the sample size of the other population go to infinity.

Example 1, Continued. In Example 1 it was illustrated that the BF shows inconsistent

behavior if the sample size of one group is fixed while the sample size of the other group

goes to infinity. When the MBF is used, the posterior distribution is unchanged and

identical to Equation 10. However, the prior distribution changes from Equation 11 to

hu(θ1, θ2 | [y,D1,D2]b) ≈ N


 0

0

 ,
 1/b1 × 1/N1 0

0 1/b2 × 1/N2


 =

N


 0

0

 ,
 2 0

0 2


 , (35)

because b1 = 1
2

1
N1

and b2 = 1
2

1
N2

. As can be seen, the prior distribution in Equation 35 is

independent of N1 and N2. This can be interpreted as the amount of prior information

being independent of the sample size, which is a desirable property. Also note, that the

prior mean does not depend on the information in the data but is chosen to be in

agreement with Equation 5.

The MBF of H1 against Hu is given by

MBF1u = f1

c1
= gu(δ = 0 | y,D1,D2)
hu(δ = 0 | [y,D1,D2]b)

= N (0 | δ̂, N−1
1 +N−1

2 )
N (0 | 0, 4) =
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2(N−1
1 +N−1

2 )− 1
2 exp

{
− δ̂2

2(N−1
1 +N−1

2 )

}
→ 2N

1
2

1 exp
{
−N1δ̂2

2

}
, (36)

as N2 →∞, where gu(.) and hu(.) are obtained based on Equations 10 and 35, respectively.

As can be seen, if δ̂ = 0 and n→∞, then f1 →∞ and c1 is constant. This implies that

MBF1u →∞. If δ̂ 6= 0 and n→∞, then f1 → 0 and c1 is constant. This implies that

MBF1u → 0. Stated otherwise, for n→∞ MBF1u is consistent. Furthermore, if N2 →∞

while N1 is fixed, then if δ̂ = 0, in the limit (see the last term of Equation 36)

MBF1u = 2N
1
2

1 which is larger than one, that is correctly expresses support for H1.

Although for N2 →∞ MBF1u does not approach ∞, this is reasonable behavior and the

inconsistent behavior of the BF is avoided. If δ̂ 6= 0 the limiting behavior of MBF1u is

shown by the last term of Equation 36. If, for example, N1 = 25 and δ̂ = .1, MBF1u = 8.8,

that is, H1 is supported. This too is reasonable, because both the sample size of Group 1

and the effect size are small and therefore the effect is not convincingly different from zero.

If both are larger, for example, N1 = 49 and δ̂ = .5, MBF1u = .03, that is, Hu is supported.

As is illustrated, the degree support for or against H1 is based on the sample size and the

effect size. This too is reasonable behavior and again the inconsistent behavior of the BF is

avoided.

As can be seen in the last two columns in the middle and right hand side panel of

Table 1 and Table 2, if both sample sizes are proportionally increasing, both BF1u and

MBF1u show consistent behavior in the sense that (M)BF1u →∞ if θ1 = θ2 and

(M)BF1u → 0 if θ1 6= θ2. Note that, as required by our choice of bg in Equation 34, for

equal sample sizes in both groups both Bayes factors are equal (see Table 1).

Furthermore, as can be seen in the last two columns in the middle and right hand

side panel of Table 3, if one sample size is fixed and the other is increasing, in contrast to

BF1u, MBF1u does not show inconsistent behavior in the sense that MBF1u is

monotonically increasing if θ̂1 = θ̂2 and MBF1u is monotonically decreasing if θ̂1 6= θ̂2. As

can be seen, in this situation, when only N2 is increased, MBF1u converges to the upper

bound 6.325 (or .546) when θ1 = θ2 (or θ1 6= θ2) based on the limit in Equation 36.
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As can be seen comparing the last number on the last line in Table 1

(N = 200, N1 = N2 = 100) with the last number on the one but last line in Table 3

(N = 210, N1 = 10, N2 = 200) it makes a huge difference in outcome whether or not the

sample sizes are balanced. Evidence in favor of the true hypothesis is larger with balanced

than with unbalanced sample sizes. �

Example 2: Analysis of Covariance

Consider the following analysis of covariance model:

yi = θ1D1i + ...+ θ5D5i + β1x1i + β2x2i + εi, with εi ∼ N (0, σ2), (37)

where D1i is equal to 1 if person i is a member of Group 1 and 0 otherwise, the other

dummy variables are defined analogously, and both covariates are centered such that θ1

through θ5 denote the covariate adjusted means. Equation 37 can be split into five parts,

one for each group:

yi = θg + β1x1i + β2x2i + εi, (38)

for g = 1, ..., G and Ng persons in each of the groups. Note that, θ1 = θ1, ...,θ5 = θ5,

η = [β1, β2], ω = σ2, and Y g = yg, Xg = [Dgg,x1g,x2g], where the second subscript g

denotes that the data correspond to the members of Group g.

Applying Equation 17, the density of the data of this model can be factored as

p(Y 1, ...,Y 5 | θ1, ...,θ5,η,ω,X1, ...,X5) =

p1(Y 1 | θ1,η,ω,X1)1−b1p1(Y 1 | θ1,η,ω,X1)b1×...×p5(Y 5 | θ5,η,ω,X5)1−b5p5(Y 5 | θ5,η,ω,X5)b5 ∝
N1∏
i=1

exp(−1
2

(yi − θ1 − β1x1i − β2x2i)2

σ2/(1− b1) )
N1∏
i=1

exp(−1
2

(yi − θ1 − β1x1i − β2x2i)2

σ2/b1
)× ...×

N∏
i=N4+1

exp(−1
2

(yi − θ5 − β1x1i − β2x2i)2

σ2/(1− b5) )
N∏

i=N4+1
exp(−1

2
(yi − θ5 − β1x1i − β2x2i)2

σ2/b5
). (39)

Maximum likelihood estimates of the parameters θ1, ..., θ5, β1, β2, σ
2 of the analysis of

covariance model from Equation 37 can, for example, be obtained using the lm function
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from the R package. Subsequently, using a well-known result from the regression literature,

the realization of Equation 32 for g = 1, ..., 5 is obtained as

Σ̂θg ,β1,β2 = σ̂2 × [X t
gXg]−1, (40)

where Xg = [Dgg,x1g,x2g], where the second subscript indicates to which group the data

elements belong. Equation 40 is obtained using the expected Fisher information. Since the

expected value of the second order derivatives with respect to, either of θ1, ..., θ5, β1, β2 on

the one hand and σ2 on the other hand, are zero, Σ̂θ1,...,θ5,β1,β2 constructed using Equation

19 based on the expected Fisher information for only these parameters is identical to the

corresponding part in Σ̂θ1,...,θ5,β1,β2,σ2 (cf. Equations 26 and 27).

Inverting and multiplication with minus one of Σ̂θg ,β1,β2 for g = 1, 2 renders the

Fisher information matrices per group. Using Equation 19 these can be assembled into the

overal Fisher information matrix which after inverting and multiplication with minus one

renders Σ̂θ1,θ2,β1,β2 . Modifying Equation 40 according to Equation 22 renders

Σ̂
bg

θg ,β1,β2 = σ̂2/bg × [X t
gXg]−1, (41)

that is, the elements of the expected Fisher information matrix for each Group g.

Reassembling these elements using Equation 23 renders Σ̂
b
θ1,θ2,β1,β2 , that is, the covariance

matrix of the prior distribution.

Example 2 will be finished using data from Stevens (1996, Appendix A) concerning

the effect of the first year of the Sesame street series on the knowledge of 240 children in

the age range 34 to 69 months. We will use the following variables: y, the knowledge of

numbers after watching Sesame street; x1, the knowledge of numbers before watching

Sesame street; x2, a test measuring the mental age of children; and D1, ...,D5 dummy

variables representing the children’s background (1=disadvantaged inner city,

2=advantaged suburban, 3=advantaged rural, 4= disadvantaged rural, 5=disadvantaged

Spanish speaking).
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The informative hypotheses of interest are:

H1 : θ1 = θ2 = θ3 = θ4 = θ5; (42)

and

H2 : {θ2, θ3} > {θ1, θ4, θ5}. (43)

Hypothesis one states that the knowledge of numbers after watching Sesame street does

not depend on background correcting for initial knowledge and mental age. Hypothesis two

states that the advantaged children have a higher knowledge after watching Sesame street

than the disadvantaged children.

Table 4 presents the input the R package Bain needs in order to evaluate H1 and H2,

that is, estimates of the adjusted means, regression coefficients, and residual variance, and,

per group, the covariance matrix for the group specific adjusted mean and both regression

coefficients, computed using σ̂2 (cf. Equation 40), and the sample size. Table 5 first of all

presents the posterior covariance matrix of the structural parameters computed from the

group specific covariance matrices using Equation 19. Subsequently, the vector b computed

using bg = 1/5× 4/Ng for g = 1, ..., G is presented. Note that J∗ equals 4 because the

number of independent constraints in

S1 =



1 −1 0 0 0

0 1 −1 0 0

0 0 1 −1 0

0 0 0 1 −1


(44)

which specifies the equality constraints in H1 and

R2 =



−1 1 0 0 0

0 1 0 −1 0

0 1 0 0 −1

−1 0 1 0 0

0 0 1 −1 0

0 0 1 0 −1



(45)
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which specifies the inquality constraints in H2, is equal to 4, that is, the number of

independent rows in the combination of S1 and R2 is equal to 4. Next, the prior covariance

matrix of the structural parameters computed using the group specific covariance matrices

and b and Equations 22 and 23 is displayed. Finally, MBF1u, MBF2u, and MBF12 are

presented. As can be seen, the support in the data is 2.21 times larger for H1 than for H2,

that is, it is slightly more likely that the gain in knowledge of numbers is equal for

advantaged and disadvantaged children than that the gain is larger for the advantaged

children. More data would be needed to obtain a more decisive conclusion.

Example 3: Logistic Regression

The example presented in the previous section illustrated how Σ̂θg ,η for g = 1, ..., G

can be computed if the statistical model at hand is a member of the (multivariate) normal

linear model (previously labeled Situation 1 ). In this section it will be illustrated how

Σ̂θg ,η for g = 1, ..., G can be obtained for models outside the (multivariate) normal linear

modeling framework (previously labeled Situation 3 ) based on the observed Fisher

information using the R package numDeriv4.

Again using the data from Stevens (1996, Appendix A) a logistic regression model is

specified in which y, is a child encouraged to watch Sesame street (0=no, 1=yes), is

predicted from gender (D1i equals 1 for a girl and zero otherwise, D2i equals 1 for a boy

and zero otherwise,), and centered age x:

p(yi | D1i, D2i, xi, θ1, θ2, β) = exp(θ1D1i + θ2D2i + βxi)
1 + exp(θ1D1i + θ2D2i + βxi)

, for i = 1, ..., N. (46)

The hypothesis of interest is:

H1 : θ1 > θ2, β > 0, (47)

that is, girls are more encouraged than boys and older children are more encouraged than

younger children.
4https://cran.r-project.org/web/packages/numDeriv/
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The top part of Table 6 presents the input the R package Bain needs in order to

evaluate H1. Note that, Σ̂θ1,β and Σ̂θ2,β are computed using the observed Fisher

information matrix rendered by the R package numDeriv using the data for Group 1

(D1g,xg) and Group 2 (D2g,xg), respectively. In the bottom part of Table 6 the output

resulting from Bain is presented. It can be observed that H1 is not supported by the data

with a MBF1u = .53. Note that, for the example at hand, Σ̂θ1,θ2,β computed using the

observed Fisher information matrix is virtually identical to Σ̂θ1,θ2,β computed using the

expected Fisher information matrix using the R package glm. However note, that this does

not always have to be the case. Researchers preferring the expected Fisher information

matrix (but, see Efron and Hinkley, 1978) will have to replace the computations with

numDeriv by formulas for the expected Fisher information for logistic regression models

(see, for example, McCullagh and Nelder, 1989, pp. 115-117).

Discussion

In this paper the approximate adjusted fractional Bayes factor BF, which is suited for

the evaluation of informative hypotheses if data are sampled from one population, has been

generalized to the multiple population approximate adjusted fractional Bayes factor MBF,

which is suited for the evaluation of informative hypotheses if data are sampled from one or

multiple populations. Both BF and MBF are implemented in the R package Bain5.

The result is a versatile and generally applicable approach for the evaluation of

informative hypotheses by means of the Bayes factor in a wide range of statistical models.

However, as elaborated earlier in the paper, there are number of topics that deserve further

research. The first topic is which sample sizes are required to obtain an accurate normal

approximation of the posterior distribution for a wide range of statistical models. The

second topic concerns the choice of b, that is, what are the properties of our proposal and

what are potential alternatives (the interested reader is referred to Gu, Hoijtink, and

5https://informative-hypotheses.sites.uu.nl/software/bain/
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Mulder (2016) for one study into this topic). The third topic is further development of

Bain such that it is easier for users to deal with, what was previously called, Situation 3,

that is, models for which numDeriv or other approaches have to be used to obtain the

covariance matrix of the parameters of interest for each of the groups in the data set. The

fourth topic is more philosophical in nature. It concerns the question whether there is an

intrinsic Bayes factor corresponding to our MBF. The fifth topic concerns a modification of

the approach presented in this paper such that it can be applied in variable selection

problems (see, for example, O’Hare and Sillanpaa, 2009). The spike-and-slap prior is

known to perform well in variable selection problems with sparse data, for example,

regression models with a relatively large number of persons to number of predictors ratio,

and in which only a few predictors are expected to have a substantial regression coefficient.

Spike-and-slab prior based variable selection is currently an exploratory approach. In the

future we will consider a more confirmatory approach based on an efficient evaluation of

sets of informative hypotheses in which it not only is considered if the regression coefficient

is substantial, but also its direction, and (partial) orderings of regression coefficients.
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Appendix: Further discussion of the consistency of the MBF

We consider two different cases. First we consider the case that hypothesis Hk only

contains inequality constraints, and no equality constraints. Second we consider the case

where Hk contains (only) equality constraints. We will discuss both N →∞ and one or

more but not all of the Ng →∞.

As was shown in this paper,

MBFku = fk
ck

=
∫
θ∈Hk
N (θ | θ̂, Σ̂θ)dθ∫

θ∈Hk
N (θ | θB, Σ̂

b

θ)dθ
. (48)

If Hk only contains inequality constraints, that is, Hk : Rkθ > rk, MBF reduces to

MBFku = Pr(Rkθ > rk|θ̂, Σ̂θ)
Pr(Rkθ > rk|θB, Σ̂

b

θ)dθ
, (49)

where the Pr(.)’s denote the probabilities that the posterior and prior distribution,

respectively, support Hk. To give one simple example, if the prior distribution of θ1, θ2, θ3
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has θB = [0, 0, 0] and an identity covariance matrix Σ̂
b

θ, then Pr(Rkθ > rk|θB, Σ̂
b

θ) = 1/6

because there are six possible orderings of three parameters that each have an equal

probability.

Let again Ng = agn, where the ag’s represent the relative size of the samples from the

G populations and let θ∗ denote the true value of θ. If the data support Hk, that is,

θ∗ ∈ Hk then if n→∞ it holds that θ̂ → θ∗, and the posterior distribution in the

numerator of Equation 48 is increasingly concentrated around θ̂ and consequently fk → 1.

Analogously, if the data do not support Hk, that is, θ∗ 6∈ Hk, fk → 0. This follows from

asymptotic theory, see, for example, Gelman et al. (2004, Chapter 4). The prior

distribution in the denominator of Equation 48 is independent of the Ng’s and thus

independent of n. As can be seen from the combination of Equations 22 and 34, for each

group the second order derivatives (which can for the vast majority of statistical models be

written as the sum of Ng contributions) are weighted with bg = J∗/G× 1/Ng, that is,

asymptotically each element of Equation 22 is independent of Ng. Consequently,

asymptotically ck is a constant that is independent of n. This is exemplified by Equation

35.

We now have all the ingredients in place to show that MBFkc where Hc : not Hk is

consistent. Note that, due to the complementary nature of Hc, fc = 1− fk and cc = 1− ck

and thus that

MBFkc = fk
ck
× cc
fc
. (50)

Then if θ∗ ∈ Hk and n→∞, MBFkc → 1/ck × cc/0→∞ and if θ∗ 6∈ Hk and n→∞,

MBFkc → 0/ck × cc/1→ 0, which implies consistency.

Theorem 4.1 from De Santis and Spezzaferri (2001) for the generalized fractional

Bayes factor and our elaboration in the context of Example 1 earlier in the paper for the

MBF provide evidence for consistency if Hk : Skθ = sk. Further evidence is obtained by

realizing that each equality constraint, e.g. θ = 0 can be written as an about equality

constraint θ > −z, θ < z for z → 0. If each equality constraint is rewritten in this manner,
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the exposition given in the beginning of this section applies to Hk : Skθ = sk and also to

Hk : Skθ = sk, Rkθ > rk.

If Ng →∞ for some but not all of the G groups, an analogous line of reasoning can

be used show that MBF shows reasonable behavior. If the data support Hk, that is,

θ∗ ∈ Hk and some of the group sizes increase then the posterior distribution in the

numerator of Equation 48 is increasingly concentrated around the parameters

corresponding to the groups with increasing group sizes (some of the θ∗g) and η∗.

Consequently fk will become larger but will not attain its maximum value 1.0.

Analogously, if θ∗ 6∈ Hk, fk will become smaller, but will will not attain its minimum value

0.0. Note that, ck is a constant irrespective of whether n→∞ or that some of the group

sizes go to infinity. These ingredients can be used to show that the behavior of the MBF is

reasonable. Looking at Equation 50 it can be seen that: if θ∗ ∈ Hk MBF will increase (to a

boundary value not to infinity) if some of the group sizes go to infinity; and, if θ∗ 6∈ Hk

MBF will decrease (to a boundary value not to zero). A proof and illustration in the

context of a simple model can be found in Example 1.
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Table 1

Investigation of consistent behavior of the One Population Bayes factor (BF) and the Multiple

Populations Bayes factor (MBF) in the case of support for H1 (x̄1 = (0, 0)) or for Hu

(x̄2 = (−.35, .35) in the case of equal sample sizes for both groups increasing at the same rate.

BF MBF

x̄1 x̄2 x̄1 x̄2

N1 N2 b Σ̂11/b Σ̂22/b BF1u BF1u b1 b2 Σ̂11/b1 Σ̂22/b2 MBF1u MBF1u

10 10 .05 2 2 4.47 1.31 .05 .05 2 2 4.47 1.31

25 25 .02 2 2 7.07 .33 .02 .02 2 2 7.07 .33

50 50 .01 2 2 10.00 .02 .01 .01 2 2 10.00 .02

100 100 .005 2 2 14.14 .00 .005 .005 2 2 14.14 .00

Note that: N1 and N2 denotes the sample sizes in Group 1 and 2, Respectively; b denotes the

fraction of information in the density of the data, and b1 and b2 denote the fraction of information

in the density of the data for Group 1 and 2, respectively; Σ̂11/b and Σ̂22/b denote the prior

variance of θ1 and θ2 from Equation 11 and Σ̂11/b1 and Σ̂22/b2 the prior variance of θ1 and θ2 from

Equation 23. The numbers in italics are referred to in the text.
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Table 2

Investigation of consistent behavior of the One Population Bayes factor (BF) and the Multiple

Populations Bayes factor (MBF) in the case of support for H1 (x̄1 = (0, 0)) or for Hu

(x̄2 = (−.35, .35) in the case of unequal sample sizes for the two groups increasing at the same

rate.

BF MBF

x̄1 x̄2 x̄1 x̄2

N1 N2 b Σ̂11/b Σ̂22/b BF1u BF1u b1 b2 Σ̂11/b1 Σ̂22/b2 MBF1u MBF1u

10 50 .017 6 1.2 7.74 1.01 .05 .01 2 2 5.77 .75

25 125 .007 6 1.2 12.25 .07 .02 .004 2 2 9.13 .06

50 250 .003 6 1.2 17.32 .00 .01 .002 2 2 12.91 .00

Note that: N1 and N2 denotes the sample sizes in Group 1 and 2, Respectively; b denotes the

fraction of information in the density of the data, and b1 and b2 denote the fraction of

information in the density of the data for Group 1 and 2, respectively; Σ̂11/b and Σ̂22/b denote

the prior variance of θ1 and θ2 from Equation 11 and Σ̂11/b1 and Σ̂22/b2 the prior variance of θ1

and θ2 from Equation 23.
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Table 3

Investigation of consistent behavior of the One Population Bayes factor (BF) and the Multiple

Populations Bayes factor (MBF) in the case of support for H1 (x̄1 = (0, 0)) or for Hu

(x̄2 = (−.35, .35) in the case of unequal sample sizes where only group size 2 increases.

BF MBF

x̄1 x̄2 x̄1 x̄2

N1 N2 b Σ̂11/b Σ̂22/b BF1u BF1u b1 b2 Σ̂11/b1 Σ̂22/b2 MBF1u MBF1u

10 10 .05 2 2 4.47 1.31 .05 .05 2 2 4.47 1.31

10 25 .029 3.5 1.4 5.92 1.03 .05 .02 2 2 5.34 .93

10 50 .017 6.0 1.2 7.74 1.01 .05 .01 2 2 5.77 .75

10 100 .009 11 1.13 10.48 1.13 .05 .005 2 2 6.03 .65

10 200 .005 21 1.05 14.94 1.41 .05 .0025 2 2 6.17 .60

10 1000 .001 101 1.01 31.78 2.81 .05 .0005 2 2 6.29 .56

Note that: N1 and N2 denotes the sample sizes in Group 1 and 2, Respectively; b denotes the

fraction of information in the density of the data, and b1 and b2 denote the fraction of information

in the density of the data for Group 1 and 2, respectively; Σ̂11/b and Σ̂22/b denote the prior

variance of θ1 and θ2 from Equation 11 and Σ̂11/b1 and Σ̂22/b2 the prior variance of θ1 and θ2 from

Equation 23. The numbers in italics are referred to in the text.
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Table 4

A Five Group Analysis of Covariance Model: Input for the R Package Bain

θ̂1 θ̂2 θ̂3 θ̂4 θ̂5 β̂1 β̂2 σ̂2

29.16 34.38 28.90 27.12 30.89 0.70 0.05 84.06

N1 N2 N3 N4 N5

60 55 64 43 18

Σ̂θ1,β1,β2 Σ̂θ2,β1,β2

1.62 -0.05 0.05 3.07 -0.01 -0.10

-0.05 0.02 -0.01 -0.01 0.02 -0.01

0.05 -0.01 0.01 -0.10 -0.01 0.01

Σ̂θ3,β1,β2 Σ̂θ4,β1,β2

2.32 .07 0.09 2.21 .04 .04

.07 0.03 -0.01 .04 .03 -0.09

0.09 -0.01 0.01 .04 -0.01 0.01

Σ̂θ5,β1,β2

5.47 0.20 -0.20

0.20 0.09 -0.05

-0.20 -0.05 0.05
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Table 5

A Five Group Analysis of Covariance Model: Output from

the R Package Bain

Σ̂θ1,θ2,θ3,θ4,θ5,β1,β2

1.45 -0.09 0.03 0.02 -0.04 -0.01 0.01

-0.09 1.96 -0.24 -0.12 0.14 0.01 -0.03

0.03 -0.24 1.46 0.07 -0.07 0.00 0.02

0.02 -0.12 0.07 1.99 -0.03 0.00 0.01

-0.04 0.14 -0.07 -0.03 4.72 0.01 -0.01

-0.01 0.01 0.00 0.00 0.01 0.01 -0.00

0.01 -0.03 0.02 0.01 -0.01 -0.00 0.00

b

0.013 0.015 0.012 0.019 0.044

Σ̂
b
θ1,θ2,θ3,θ4,θ5,β1,β2

108.14 -5.52 2.02 0.89 -2.66 -0.85 0.67

-5.52 129.41 -13.40 -6.77 7.90 0.46 -1.82

2.02 -13.40 113.04 4.09 -3.86 0.17 0.85

0.89 -6.77 4.09 107.20 -1.89 0.14 0.41

-2.66 7.90 -3.86 -1.89 108.07 0.51 -0.72

-0.85 0.46 0.17 0.14 0.51 0.31 -0.14

0.67 -1.82 0.85 0.41 -0.72 -0.14 0.17

MBF1u MBF2u MBF12

2.94 1.34 2.21

Note that, the number in italics is referred to in the text.
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Table 6

A Two Group Logistic Regression

Input for the R Package Bain

θ̂1 θ̂2 β̂

.50 .60 -.01

N1 N2

125 115

Σ̂θ1,β Σ̂θ2,β

.03 .00 .04 -.00

.00 .00 -.00 .00

Output from the R Package Bain

Σ̂θ1,θ2,β

0.03 -0.00 0.00

-0.00 0.04 -0.00

0.00 -0.00 0.00

b

0.008 0.009

Σ̂
b
θ1,θ2,β

4.28 -0.02 0.03

-0.02 4.39 -0.04

0.03 -0.04 0.06

MBF1u

.53

Note that, the number in italics is

referred to in the text. Note

furthermore, that Σ̂θ1,θ2,β does not

change when computed using the

expected Fisher information.




