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Abstract

The Bayes factor is increasingly used for the evaluation of hypotheses. These may be

traditional hypotheses specified using equality constraints among the parameters of the

statistical model of interest or informative hypotheses specified using equality and

inequality constraints. So far no attention has been given to the computation of Bayes

factors from data with missing values. A key property of such a Bayes factor should be

that it is only based on the information in the observed values. This paper will show that

such a Bayes factor can be obtained using multiple imputations of the missing values.

After introduction of the general framework elaborations for Bayes factors based on

default or subjective prior distributions and Bayes factors based on priors specified using

training data will be given. It will be illustrated that the approach proposed can be applied

using R packages for multiple imputation in combination with the Bayes factor packages

Bain and BayesFactor. It will furthermore be illustrated that Bayes factors computed

using a single imputation of the data are very inaccurate approximations of the correct

Bayes factor.

Keywords: Bayes Factor, Informative Hypotheses, Missing Data, Multiple Imputation.
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Computing Bayes Factors from Data with Missing Values

Introduction

The Bayes factor (Kass and Raftery, 1995; Mulder and Wagenmakers, 2016) is

increasingly used for the evaluation of traditional hypotheses specified using equality

constraints among the parameters of the statistical model of interest and informative

hypotheses (Hoijtink, 2012) specified using inequality and equality constraints (see for

applications, for example, Van Schie et al., 2016, and Kolkman et al., 2013). This paper

will clarify how these hypotheses can be evaluated using Bayes factors computed from data

with missing values. First of all, multiple imputation of the missing values will be used to

create multiple completed data matrices (Rubin, 1987; Shafer, 1997, Van Buuren, 2012).

Secondly, it will be shown that these completed data matrices can be used to approximate

the posterior and prior distributions of the parameters of the model at hand such that only

the information in the observed values and not the information in the imputed values, is

used. Finally, it will be shown that the Bayes factor using only the information in the

observed values is a function of these prior and posterior distributions. A strong point of

this approach is that each completed data matrix can easily be analyzed using software

(e.g., for parameter estimation or Bayes factor computation) that requires data without

missing values, and, as will be elaborated in this paper, subsequent combination of these

analyses renders Bayes factors using only the information in the observed values and not

the information in the imputed values.

The focus will be on two approaches for which software implementations are readily

available. The first combines multiple imputation with the evaluation of informative

hypotheses using the approximate adjusted fractional Bayes factor (Mulder, 2014; Gu et

al., 2014; Gu, 2016; Gu et al. 2016; Gu, Mulder, and Hoijtink, in press) as implemented in

the R package Bain (https://informative-hypotheses.sites.uu.nl/software/bain/).

The second combines multiple imputation with the g-prior based Bayes factors

implemented in the BayesFactor package
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(http://bayesfactorpcl.r-forge.r-project.org/). This Bayes factor is mainly suited

for the evaluation of hypotheses specified using equality constraints (see, for example,

Rouder et al., 2009) although there are options to test one-sided hypotheses and about

equality constraints (Morey and Rouder, 2011). More information about the models that

can be handled with both packages will be provided in the section about informative

hypotheses. It will be argued that the combination of multiple imputation with Bain or

BayesFactor provides a versatile tool for the the evaluation of informative hypotheses if

the data contain missing values. There are many R packages that can be used to create

multiple imputations (see, http://stefvanbuuren.nl/mi/Software.html, for an

overview). This paper will be illustrated using the R packages norm (Shafer, 1997) which

uses, so called, joint multiple imputation, that is, "it is assumed that the data follow a

known joint probability distribution with unknown parameters" (Kropko et al., 2014) and

mice (http://www.stefvanbuuren.nl/mi/mice.html; Van Buuren, 2012) which, like the

mi package (https://cran.r-project.org/web/packages/mi/index.html), uses, so

called, full conditional imputation, that is, only the distribution of each variable

conditional upon the other variables is specified. The differences between and options

provided by both approaches will be highlighted later in this paper. To ensure applicability

of the approaches presented in this paper, the data and annotated codes used for each of

the examples are made available as online supplementary materials.

Additionally, in Appendix A, there is attention for Bayes factors that can currently

not easily be applied in the context of missing data. The fractional Bayes factor (O’Hagan,

1995) can be used for the evaluation of hypotheses specified using equality constraints. It

will be presented but not illustrated because it is not implemented in software. Two Bayes

factors using minimal training samples (Perez and Berger, 2002; Berger and Pericchi, 1996,

2004) to specify the prior distribution will be presented. The first can be used to evaluate

hypotheses specified using equality constraints. The second, implemented in the software

package BIEMS (Mulder, Hoijtink, and de Leeuw, 2012), can be used for the evaluation of
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hypotheses specified using equality and inequality constraints. For both it will be shown

how they can be computed from data with missing values. This will not be illustrated

because for the first no software exists and BIEMS does not provide the information

necessary to computed the Bayes factor from data with missing values. The paper is

concluded with a short discussion.

Analysis Model and Imputation Model

In this section the analysis model and the imputation model will be introduced

(Meng, 1995; Schafer, 1999). Here and in the following sections the elaborations will be

general and illustrated using a normal linear regression model.

To make inferences from data, an analysis model has to be specified. This can be, for

example, a normal linear regression model, a structural equation model, or a multilevel

model. The data will be denoted by X. Often X is a N × P matrix, where N denotes the

number of persons and P the number of variables. In many cases X contains missing

values, that is, X can be split into Xm and Xo, where Xo contains the observed values

and Xm the missing values. The density of the data of the analysis model will be denoted

by p(X | θ), where θ denotes the parameters of the analysis model. These can be, for

example, means, regression coefficients, or factor loadings. In the next section, the model

parameters will be decomposed into θ = [γ,ω] where γ denotes the parameters with

respect to which hypotheses are formulated, and ω the nuisance parameters.

Example 1: Normal Linear Regression

Let X = [y,x1,x2], with y = [y1, ..., yi, ..., yN ], x1 = [x11, ..., xi1, ..., xN1], and

x2 = [x12, ..., xi2, ..., xN2] where each variable is continuous. The normal linear regression

model is

yi = α0 + α1xi1 + α2xi2 + ei, and xi1, xi2 ∼ N (µx,Σx) (1)

where i = 1, ..., N , α0 denotes the intercept, α1 and α2 relate the continuous predictors x1
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and x2 to the dependent variable y, ei ∼ N (0, σ2) denotes the error in prediction, and µx

and Σx denote the mean vector and covariance matrix of x1 and x2, respectively. The

density of the data is

p(y,x1,x2 | α, σ2,µx,Σx) = p(y | x1,x2,α, σ
2)p(x1,x2 | µx,Σx) =

1
√

2πσ2N
exp(− 1

2σ2

N∑
i=1

(yi − α0 − α1xi1 − α2xi2)2)N (x1,x2 | µx,Σx), (2)

in which a model is specified for the predictors too, that is, they are not assumed to be

fixed. In this example γ = [α1, α2] because these are the parameters with respect to which

hypotheses will be formulated in the next section. Consequently, the nuisance parameters

are ω = [α0, σ
2,µx,Σx].

End Example 1

When data contain missing values, p(Xm,Xo | θ) can not straightforwardly be

evaluated. This problem can be solved using multiple imputation (Rubin, 1987; Shafer,

1997; van Buuren, 2012). Classical applications of multiple imputation consist of three

steps. In the first step an appropriately chosen imputation model is used to create multiple

completed data matrices in which the missing values are imputed. In the second step each

completed data matrix is used to estimate the parameters of the analysis model. In the

third step, the Rubin rules (see, for example, van Buuren, 2012, pp. 37-38) are used to

combine these estimates and their covariance matrix such that the resulting overall

estimates and covariance matrix are based only on the information in the observed values

and not on the information in the imputed values.

As will be elaborated later in this paper and Appendix A, steps two and three are are

only used when the Bayes factor implemented in Bain is computed from data with missing

values. However, for all Bayes factors an imputation model has to be used to create

completed data matrices. The imputation model will be denoted by
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p(Xm,Xo,Zm,Zo | θ,η). Note that Z is a N ×R matrix containing auxiliary variables.

Analogous to X it can be split into parts containing the observed and missing values: Zo

and Zm. Note furthermore, that the parameters of the imputation model consist of the

parameters θ of the analysis model augmented with parameters η that account for the

presence of the auxiliary variables Z. Why this is a necessary requirement will be

elaborated when simplifying Equation 16 to 18 and Equation 20 to 22.

The imputation model has to be chosen such that conditional on the variables in this

model the missing data are believed to be missing at random (MAR, van Buuren, 2012, pp.

6-8, 31-33), that is, the distribution of missingness does not depend on Xm,Zm (Shafer

and Graham, 2002). The big question is which auxiliary variables Z have to be added to

the variables X already in the analysis model to achieve MAR. Unless missingness is

planned the mechanism causing the missingness is unknow to the researcher. Shafer and

Graham (2002) write "When missingness is beyond the researchers’s control, its

distribution is unknown and MAR is only an assumption. In general, there is no way to

test whether MAR holds in a data set". They also write "Although it is not necessary to

have a scientific theory underlying an imputation model, it is crucial for that model to be

general enough to preserve effects of interest in later analyses." What is often done in

practice is that the variables X from the analysis model are augmented with auxiliary

variables Z that are expected to be good predictors of the variables in the analysis model

containing missing values. Although there can be a convincing argument with respect to

which and how many auxiliary variables to add, there is no way to test whether MAR is

achieved, MAR is only an assumption. This holds for classical applications of multiple

imputation and also when it is used to compute Bayes factor from data with missing

values. For a comprehensive overview of multiple imputation and construction of the

imputation model the interested reader is referred to the references given in this section.

Their elaborations directly apply to the use of multiple imputation when the goal is to

compute Bayes factor from data with missing values.
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After the choice of X and Z, the imputation model p(Xm,Xo,Zm,Zo | θ,η) has to

be specified. There are two dominant approaches. The first is joint modeling, that is, a

complete specification of p(Xm,Xo,Zm,Zo | θ,η) as is used in Shafer (1997) and the

corresponding R packages norm in which X and Z are modeled using a multivariate normal

distribution (Chapters 5 and 6), cat in which X and Z are modeled using a log-linear

model (Chapters 7 and 8), and mix in which X and Z are modeled using a general

location model (Chapter 9). The second is full conditional specification (van Buuren, 2012)

in which only the conditional density of each variable given the other variables is specified

as is implemented in the R packages mice and mi.

The statistical theory underlying joint modeling is crystal clear: sample Xm,Zm,θ,

and η iteratively from a posterior distribution based on p(.) and use the sampled values of

Xm,Zm to create completed data matrices. However, joint modeling may be difficult or

impossible in a case of complex data structures (e.g., data requiring multilevel modeling) or

when the data not only contain groups and continuous dependent and predictor variables,

a situation which is covered by the general location model (Shafer, 1997, Chapter 9), but

also variables requiring modeling with, for example, a binomial or Poisson distribution. In

contrast, full conditional specification is usually easy and straightforward, but until

recently the statistical theory underlying this approach was only poorly understood.

However, meanwhile is has become clear that when the conditional specifications are linear,

logistic, and multinomial regressions, these are compatible with a restricted general

location model (Hughes et al., 2014; Liu, et al., 2014; Seaman and Hughes, 2016).

Furthermore, there is ample evidence that full conditional specification renders proper

imputations even even there is no compatible joint distribution. The interested reader is

referred to Kropko et al. (2014), Liu et al. (2014), van Buuren et al. (2007), van Buuren

(2007), and Zhu and Raghunathan (2015) for further elaborations.

As will be elaborated in the section "Imputation of Missing Values", for the

developments in this paper it is irrelevant whether joint modeling or full conditional
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modeling is used. It is also irrelevant which of the available R packages is used. The

illustrations given will be executed with the R packages norm and mice, that is, one using

joint modeling and one using full conditional specification. This will provide a stepping

stone for researchers wanting to used other packages of either type.

Example 1 Continued: Normal Linear Regression

When there is one auxiliary variable, that is, Z = z, with z = [z1, ..., zi, ..., zN ], a

common imputation model p(y,x1,x2, z | θ,η) in the context of normal linear regression is:



y

x1

x2

z


∼ N





my

m1

m2

mz


,



s2
y sy1 sy2 syz

sy1 s2
1 s12 s1z

sy2 s12 s2
2 s2z

syz s1z s2z s2
z




, (3)

(Schafer, 1997, p. 157; Van Buuren, 2012, pp. 105-107) where, η = [mz, s1z, s2z, s
2
z, syz] and

θ = [my,m1,m2, s
2
y, sy1, sy2, s

2
1, s12, s

2
2]. Note that, α, σ2,µx,Σx are a function of θ, and

therefore that the imputation model encompasses the analysis model presented in Equation

1. Note furthermore, as will be highlighted later on, that Equation 3 can be implemented

using both joint modeling and full conditional modeling (Hughes et al., 2014).

End Example 1

Informative Hypotheses

An important tool in psychological research is the evaluation of hypotheses with

respect to the parameters of the analysis model. In this paper we consider the class of

linear (in)equality constrained hypotheses also known as informative hypotheses (Hoijtink,

2012, Chapter 1). If θ = [γ,ω], where γ is vector of length J containing the parameters

that are used in the hypotheses and ω contains the parameters that are not used, for
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k = 1, ..., K the hypotheses can be formalized as:

Hk : Skγ = sk,Rkγ > rk, (4)

where Sk is a J × k1 matrix imposing k1 equality constraints on γ, Rk is a J × k2 matrix

imposing k2 inequality constraints, and sk and rk are vectors containing constants of size

k1 and k2, respectively. Additionally of interest is Hu : γ, that is, Hu : γ1, ..., γJ , an

hypothesis without constraints on the parameters γ. This definition of Hu will be used

throughout this paper. If H1 through HK are formulated with respect to the parameters

collected in γ, then Hu is the hypotheses that states that there are no restrictions on γ.

Consequently, H1 through HK are always nested within Hu. As will be shown in the next

section, this property is used to represent the Bayes factor in terms of the fit and the

complexity of the hypotheses entertained.

The persistent critique on p-values (see, for example, Wagenmakers, 2007, and

Cumming, 2012) has led to an increased attention for the Bayes factor as a tool for

hypothesis evaluation. The R package BayesFactor allows researchers to evaluate classical

null-hypotheses using the Bayes factor in the context of the normal linear model (e.g.,

ANOVA, multiple regression, t-tests) and contingency tables. However, also the

null-hypothesis has been criticized. Both Cohen (1994) and Royal (1997) criticize the

null-hypothesis for being so specific that it is often hard to imagine a population where it

holds. This is nicely summarized in Cohen’s (1994) title "The earth is round, p < .05", that

is, a precise hypothesis can be rejected without using data. Another critique is that the

null-hypothesis usually does not represent the theory or expectation a researcher has. As is

highlighted in Hoijtink (2012) (see also

https://informative-hypotheses.sites.uu.nl/), informative hypotheses are an

extension of the classical null-hypothesis (see Equation 4) that can represent the theory or

expectation of a researcher. Simple examples are: "The depression level after therapy (µ1)

is smaller than the depression level after medication (µ2) which in turn is smaller than the

depression level in a control group (µ3)" leading to Hk : µ1 < µ2 < µ3; "The larger
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intelligence and social economic status (with standardized regression coefficients β1 and β2,

respectively), the larger income, but intelligence is the stronger predictor" leading to

Hk : β1 > 0, β2 > 0, β1 > β2; and, "the effect of the new medication on headache (µ1) is

irrelevantly different from the effect of the old medication (µ2)" leading to

Hk : |µ1 − µ2| < d× s, where s is an estimate of the within group variance and d denotes

Cohen’s d for which a value demarcating (ir)relevance can be chosen by the researcher.

Informative hypotheses are increasingly used by psychological researchers. An overview can

be found at

https://informative-hypotheses.sites.uu.nl/publications/applications/.

Classical hypotheses and informative hypotheses can be evaluated using the Bayes factor

implemented in Bain. It has thus far (see, Gu, 2016) been applied in the context of the

multivariate normal linear model, logistic regression, multilevel modeling, confirmatory

factor analysis, and structural equation modeling. It can be applied to any model for which

a normal approximation of the posterior distribution of the model parameters is reasonable.

Example 1 Continued: Normal Linear Regression

For the regression model displayed in Equation 1 γ = [α1, α2], that is, hypotheses are

formulated with respect to both regression coefficients but not with respect to the other

parameters. Three hypotheses will be used that are specifications of Equation 4:

H1 : α1 = α2 = 0, (5)

H2 : α1 > 0, α2 > 0, α1 > α2, (6)

and,

Hu : α1, α2, (7)

HIGHLIGHT DE ROL VAN Hu where H1 specifies that both regression coefficients are

zero and H2 specifies that both regression coefficients are larger than zero and that the first

is larger than the second. Note that the latter restriction only makes sense if the scale on
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which both predictors are measured is considered to be comparable. As can be seen, H1 and

H2 specify hypotheses with respect to α1 and α2, therefore, Hu is the hypothesis in which

there are no restrictions on both regression coefficients: Hu : α1, α2. Note that, for H2

R2 =

 0 1

1 −1

 (8)

and r2 = −[0, 0]. Only the last two restrictions in Equation 6 are specified because they

render the first redundant.

End Example 1

Bayes Factor for the Evaluation of Informative Hypotheses in the Absence of

Missing Values

The basic structure of the Bayes factor implemented in BayesFactor, Bain and other

types of Bayes factors (see Appendix A) used for the evaluation of hypotheses of the form

displayed in Equation 4 is identical. Each requires the specification of the posterior and

prior distribution of the parameters of the model at hand. The posterior distribution will

be denoted by gu(θ,η |Xo,Zo), where the subscript u denotes that it is the posterior

distribution under Hu. Similarly, the prior distribution will be denoted by

hu(γ + γadj,ω,η |Xo,Zo).

Both the mean and the (co)variance(matrix) of the prior distribution require careful

specification and will now shortly be discussed. When testing the hypothesis H0 : γ = 0

versus Hu : γ 6= 0 with data xi ∼ N (γ, ω), for i = 1, ..., N , Jeffreys (1961) suggests to use

hu(γ, ω) = hu(γ)hu(ω) and to give hu(γ) a mean of zero, that is, centered on the null-value

used in H0. Inspired by Jeffreys the ANOVA, regression, and t-test functions implemented

in BayesFactor also center the prior distribution on the values specified by the null

hypothesis, see, for example, Rouder et al. (2009). Mulder (2014) generalizes this principle

to hypotheses of the general form displayed in Equation 4 using, what he calls, an



COMPUTING BAYES FACTORS 14

adjustment of the prior mean that can be obtained as follows. Let

γB ∈ {SkγB = sk, RkγB = rk} for k = 1, ..., K, (9)

that is, γB denotes a value of γ on the boundary of all the hypotheses under investigation.

Let γ̂ denote the mean of hu(γ,ω,η |Xo,Zo) with respect to γ. Then using

γadj = −γ̂ + γB ensures that the mean of hu(γ + γadj,ω,η |Xo,Zo) is equal to γB.

Applied to H0 this adjustement will render a prior mean of 0 and applied to the ANOVA,

regression, and t-test functions implemented in BayesFactor it will also render the values

specified by the respective null hypotheses. Often the parametric shape of hu(γ) is normal,

Cauchy, or t. This implies that also the prior (co)variance(matrix) or scale(matrix) has to

be specified. As will be elaborated later in this paper, for the Bayes factors implemented in

Bain and discussed in Appendix A this is done using the a fraction of the information in

the data, for the Bayes factors implemented in BayesFactor a subjective specification that

is independent of the data is required.

As can be seen in, for example, Hoijtink (2012, pp. 51-52), the Bayes factor is often

used to compare Hk with Hu. Based on Chib’s (1995) representation of the Bayes factor,

and the derivation presented in Hoijtink (2012, p. 59, see also Appendix B of this paper),

the Bayes factor comparing the informative hypothesis Hk with the unconstrained

hypothesis Hu can be written as:

BFku = fk
ck
, (10)

were fk denotes the fit of Hk, that is,

fk =
∫
θ∈Hk

∫
η
gu(θ,η |Xo,Zo)dθdη. (11)

If hypotheses are specified using only inequality constraints, this is the proportion of the

posterior distribution gu(.) in agreement with Hk. The complexity of Hk is denoted by ck,

that is,

ck =
∫
γ∈Hk

∫
ω

∫
η
hu(γ + γadj,ω,η |Xo,Zo)dγdωdη. (12)
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If hypotheses are specified using only inequality constraints, this is the proportion of the

prior distribution hu(.) in agreement with Hk. In the absence of missing data, after

specification of gu(.) and hu(.), the Bayes factor displayed in Equation (10) can

straightforwardly be computed using the packages BayesFactor and Bain. The Bayes

factor BFku quantifies the relative support in the data for Hk and Hu. If, for example,

BFku = 5 the support for Hk is five times stronger than the support for Hu. From the

Bayes factors versus the unconstrained model the Bayes factor of Hk versus Hk′ can be

obtained using BFkk′ = BFku/BFk′u.

In general it is not easy to compute Bayes factors. However, the interested reader is

referred to Chib (1995) and Chib and Jeliazkov (2001) for a generally applicable procedure

that gives stable results. However, these procedures do not have to be applied when Bayes

factors are computed using BayesFactor or Bain. The Bayes factors implemented in

BayesFactor can exactly be computed via the evaluation of relatively simple formulas (see,

Rouder et al., 2009, for an example). The Bayes factors implemented in Bain continues a

tradition started by Klugkist, Laudy, and Hoijtink (2005) who estimated fk and ck by

counting the proportion of samples from the posterior and prior distributions, respectively,

in agreement with Hk. This idea was improved upon by Mulder, Hoijtink, and de Leeuw

(2012) who decomposed the fit into one component for each of the k1 + k2 constraints used

to specify Hk such that very accurate estimates of each component could be obtained even

if the number of components is large. This idea was further improved by Gu (2016) and

Gu, Mulder, and Hoijtink (in press) who simplified the computation of the fit of the k1

components specified using equality constraints and increased the speed of computation

without sacrificing accuracy.
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Bayes Factor for the Evaluation of Informative Hypotheses from Data with

Missing Values

To obtain the Bayes factor from Equation 10 from data with missing values, fk and

ck, that is, the fit and complexity computed using only the information in the observed

values and not the imputed values, have to be computed. The derivation of the fit from

data with missing values starts with the observation that

gu(θ,η |Xo,Zo) =
∫
Xm,Zm

gu(θ,η,Xm,Zm |Xo,Zo)dXmdZm =

∫
Xm,Zm

gu(θ,η |Xm,Zm,Xo,Zo)g(Xm,Zm |Xo,Zo)dXmdZm ≈

1
Q

Q∑
q=1

gu(θ,η |Xq
m,Z

q
m,Xo,Zo), (13)

where Xq
m,Z

q
m denotes the q-th imputation of the missing values obtained by sampling

from g(Xm,Zm |Xo,Zo) =
∫
θ

∫
η gu(θ,η,Xm,Zm |Xo,Zo)dηdθ. Note that the latter

can be achieved by iteratively sampling from

gu(θ,η |Xm,Zm,Xo,Zo) (14)

and

p(Xm,Zm | θ,η,Xo,Zo), (15)

and only retaining the sampled values Xq
m and Zq

m at each iteration q. Using Equation 13,

the fit can be computed from data with missing values using

fk =
∫
θ∈Hk

∫
η

1
Q

Q∑
q=1

gu(θ |Xq
m,Z

q
m,Xo,Zo)gu(η | θ,Xq

m,Z
q
m,Xo,Zo)dθdη. (16)

This result can be simplified to

fk =
∫
θ∈Hk

1
Q

Q∑
q=1

gu(θ |Xq
m,Xo, )dθ = 1

Q

Q∑
q=1

f qk , (17)

or in terms of γ

fk =
∫
γ∈Hk

1
Q

Q∑
q=1

gu(γ |Xq
m,Xo)dγ = 1

Q

Q∑
q=1

f qk , (18)
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where f qk denotes the fit computed from the qth imputed data matrix (cf. Equation 11). As

can be seen, the fit computed from data with missing values is the average of the fits

computed for Q imputed data matrices. Note that, if Hk specifies that one or more of the

γ’s has a fixed value (e.g., γ1 = 0) the integration in Equations 17 and 18 evaluates gu(·)

with these γ’s fixed at the specified values (e.g., gu(γ1 = 0, γ2, ..., γJ |Xq
m,Xo) integrated

with respect to γ2, ..., γJ). The same holds for the integration in Equations 21 and 22 below.

Similarly, the derivation of the complexity starts with the observation that

hu(γ + γadj,ω,η |Xo,Zo) =
∫
Xm,Zm

hu(γ + γadj,ω,η,Xm,Zm |Xo,Zo)dXmdZm =
∫
Xm,Zm

hu(γ + γadj,ω,η |Xm,Zm,Xo,Zo)g(Xm,Zm |Xo,Zo)dXmdZm =

1
Q

Q∑
q=1

hu(γ + γadj,ω,η |Xq
m,Z

q
m,Xo,Zo). (19)

Subsequently, using analogous steps as for the fit, the complexity can be computed as:

ck =
∫
γ∈Hk

∫
ω

∫
η

1
Q

Q∑
q=1

hu(γ + γadj,ω,η |Xq
m,Z

q
m,Xo,Zo)dγdωdη, (20)

which can be simplified to

ck =
∫
γ∈Hk

∫
ω

1
Q

Q∑
q=1

hu(γ + γadj,ω |Xq
m,Xo)dγdω = 1

Q

Q∑
q=1

cqk, (21)

or in terms of γ

ck =
∫
γ∈Hk

1
Q

Q∑
q=1

hu(γ + γadj |Xq
m,Xo)dγ = 1

Q

Q∑
q=1

cqk, (22)

where cqk denotes the fit computed from the qth imputed data matrix (cf. Equation 12). As

can be seen, the complexity computed from data with missing values is the average of the

complexities computed for Q imputed data matrices.

Equations 17/18 and 21/22 can be used to compute the Bayes factor BFku displayed

in Equation 10 from data with missing values. For the Bayes factors implemented in

BayesFactor and those presented in Appendix A, the following representation will be used:

BFku = fk
ck

=
1
Q

∑Q
q=1 f

q
k

1
Q

∑Q
q=1 c

q
k

. (23)
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As can be seen, the Bayes factor computed from data with missing values can be

represented as the average of the fits computed from imputed data matrices divided by the

average of the complexities computed from imputed data matrices. For the Bayes factor

implemented in Bain the following representation will be used (cf. Equation 13):

BFku = fk
ck

=
∫
γ∈Hk

1
Q

∑Q
q=1 gu(γ |Xq

m,Xo)dγ∫
γ∈Hk

1
Q

∑Q
q=1 hu(γ + γadj |Xq

m,Xo)dγ
=

∫
γ∈Hk

gu(γ |Xo)dγ∫
γ∈Hk

hu(γ + γadj |Xo)dγ
. (24)

Imputation of the Missing Values

As was elaborated earlier in this paper, imputations of the missing values can be

obtained using joint modeling of the variables in the imputation model as is, for example,

implemented in the R packages norm, cat, and mix, or full conditional modeling as is, for

example, implemented in the R packages mice and mi. In this paper all illustrations will

use norm and/or mice.

In case of joint modeling imputations should be obtained by iteratively sampling from

Equations 14 and 15. An approximation of these imputations can be achieved using a joint

posterior distribution proportional to

p(Xm,Zm,Xo,Zo | θ,η)h(θ,η), (25)

where h(θ,η) is a standard uninfomative prior distribution as is implemented in the R

packages norm, cat, and mix. This posterior is asymptotically equal to Equation 14 which

is proportional to

p(Xm,Zm,Xo,Zo | θ,η)hu(γ + γadj,ω,η |Xm,Zm,Xo,Zo), (26)

because for increasing sample size the effect of the different prior distributions disappears.

In case of full conditional modeling as is implemented in the R packages mice and mi,

the following sampling scheme is used. Let xp denote one column from [X,Z] for

p = 1, ..., P +R. It is required to specify a conditional imputation model p(xp | λp,x−p) for
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p = 1, ..., P +R, in which λp denotes the parameters of the model used to impute xp. Note

that x−p denotes all the columns in [X,Z] except xp. Subsequently, the following

procedure is used to create imputations:

1. Assign initial values, denoted by q = 0, to Xq
m and Zq

m.

2. Iterate Steps 3 and 4 for p = 1, ..., P +R during q = 1, ..., Q iterations.

3. Sample λp,q from g(λp | xp,q−1,x−p,q−1) ∝ p(xp,q−1 | λp,x−p,q−1)h(λp) where h(.) is

a standard uninformative prior.

4. Sample xp,qm from p(xpm | λp,q,x1,q, ...,xp−1,q,xp+1,q−1, ...,xP+R,q−1).

Application of this procedure results in q = 1, ..., Q imputed data matrices

[Xq
m,Xo,Z

q
m,Zo].

Example 1 Continued: Normal Linear Regression

When norm is used to impute the missing values the following procedure is used:

1. Assign initial values (q = 0) to yqm,x
q
1m,x

q
2m, z

q
m.

2. Iterate Steps 3 and 4 for q = 1, ..., Q

3. Sample αq, σ2q,µqx,Σq
x from a posterior distribution proportional to Equation 25 in

which p(Xm,Zm,Xo,Zo | α, σ2,µx,Σx) is equal to Equation 3 and h(α, σ2,µx,Σx) is a

standard uninformative prior.

4. Sample yqm,x
q
1m,x

q
2m, z

q
m from p(yqm,x

q
1m,x

q
2m, z

q
m|α, σ2,µx,Σx)

the interested reader is referred to Shafer (1997, Chapters 5 and 6) for further elaborations.

When mice is used to impute the missing values the following procedure is used:

1. Assign initial values (q = 0) to yqm,x
q
1m,x

q
2m, z

q
m.

2. Iterate Steps 3 through 5 for q = 1, ..., Q.

3. Sample λq from g(λq | yq−1,xq−1
1 ,xq−1

2 , zq−1) ∝ p(yq−1 | xq−1
1 ,xq−1

2 , zq−1,λq)h(λq),

where p(.) is based on

yq−1
i = λq0 + λq1x

q−1
i1 + λq2x

q−1
i2 + λq3z

q−1
i + ei, with ei ∼ N (0, λq4), (27)

and h(λq) ∝ 1/λq4.
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4. Sample each missing value yqim from

p(yim | xq−1
i1 , xq−1

i2 , zq−1
i ,λq) ∼ N (λq0 + λq1x

q−1
i1 + λq2x

q−1
i2 , λq4).

5. Repeat for xi1,m, xi2,m, zim steps analogous to Steps 3 and 4 based on

p(xq−1
1 | yq,xq−1

2 , zq−1,λq), p(xq−1
2 | yq,xq1, zq−1,λq), and p(zq−1 | yq,xq1,x

q
2,λq),

respectively. The interested reader is referred to van Buuren (2012, Chapter 4) for further

elaborations.

End Example 1 Continued

Computing “BayesFactor(s)” from Data with Missing Values

The Bayes factors implemented in the R package BayesFactor are mainly suited for

the evaluation of hypotheses specified using equality constraints. Many of these Bayes

factors can be computed using Equations 17 and 21 based on

gu(θ |Xm,Xo) ∝ p(Xm,Xo | θ)hu(γ + γadj,ω). (28)

Because hu(·) is a user specified prior distribution that does not depend on the data

and therefore does not vary over imputed data sets, Equation 23 can be rewritten as:

BFku =
1
Q

∑Q
q=1 f

q
k

1
Q

∑Q
q=1 c

q
k

=
1
Q

∑Q
q=1 f

q
k

ck
= 1
Q

Q∑
q=1

f qk
ck

= 1
Q

Q∑
q=1

BF q
ku, (29)

where the fit computed from the q-th imputed data matrix

f qk =
∫
θ∈Hk

gu(θ |Xq
m,Xo)dθ (30)

and the complexity

ck =
∫
θ∈Hk

hu(γ + γadj,ω)dθ. (31)

Stated otherwise, BFku can be computed from data with missing values as the average of

the corresponding Bayes factors computed for each imputed data set. Note that, Equation

29 implies that it is not possible to compute BFuk as the average of the corresponding
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BF q
uks:

BFuk =
1
Q

∑Q
q=1 c

q
k

1
Q

∑Q
q=1 f

q
k

= ck
1
Q

∑Q
q=1 f

q
k

, (32)

which can not be rewritten in terms of BF q
uks. Therefore, to ensure transitivity

relationships BFuk = 1/BFku and BFkk′ = BFku/BFk′u.

Not all functions in the BayesFactor package use prior distributions that do not

depend on the data. Examples for which this does hold are Bayes factors for t-tests and

ANOVAs (Rouder et al. 2009; Rouder et al. 2012) but not Bayes factors for multiple

regression (Rouder et al. 2012) because there the data for the predictors is used to scale

the prior distribution. The approach presented in this paper can only be used with the

BayesFactor package if the prior distribution is specified independently of the data.

Note that, as highlighted earlier, the approximate equality in Equation 29 is caused

by the fact that the posterior distribution used by, for example, norm or mice to create

multiple imputations is only asymptoticallly equal to Equation 28.

Computing the Approximate Adjusted Fractional Bayes Factor from Data with

Missing Values

The Bayes factor implemented in Bain is suited for the evaluation of hypotheses of

the general form displayed in Equation 4, that is, specified using equality and/or inequality

constraints. It uses a fraction of the information in the likelihood to specify the prior

distribution. When introducing the unadjusted fractional Bayes factor, O’Hagan (1995)

used the following factorization:

p(Xm,Xo | θ) =

c× `(Xm,Xo | θ)1−b(Xm,Xo)`(Xm,Xo | θ)b(Xm,Xo), (33)

where c denotes the normalizing constant, and `(·) the likelihood function. The idea is to

use a fraction b(Xm,Xo) of the information in the likelihood function to implicitly specify

a default prior distribution (Gilks, 1995). Usually the fraction b(Xm,Xo) is chosen such

that it corresponds to the size of a minimal training sample (Berger and Pericchi, 1996,
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2004), that is, in the case of complete data, the smallest sample of size S out of N complete

observations rendering a proper prior distribution: b(Xm,Xo) = S/N .

In line with Mulder (2014) this idea can be used to specify the adjusted fractional

Bayes factor as a function of the prior and posterior distribution of θ under Hu:

gu(θ |Xm,Xo) ∝

`(Xm,Xo | θ)1−b(Xm,Xo)hu(γ + γadj,ω |Xm,Xo), (34)

where the adjusted fractional prior hu(· | ·)

hu(γ + γadj,ω |Xm,Xo) ∝

`(Xm,Xo | γ + γadj,ω)b(Xm,Xo)h(γ,ω) =

gu(γ + γadj,ω |Xm,Xo, b(Xm,Xo)), (35)

is based on a standard uninformative prior h(·) and an adjusted mean for γ. Note that,

gu(... | ..., b(...)) denotes a prior distribution based on a fraction b(...) of the information in

the posterior distribution.

Bain (Gu et al., 2014; Gu, Mulder, and Hoijtink, in press) is an abbreviation of

Bayesian inequality constrained hypotheses evaluation. It renders an approximation of the

adjusted fractional Bayes factor based on a normal approximation of the posterior and

prior distributions of the parameters γ, that is, a normal approximation of Equation 34

and 35 with ω integrated out. The posterior distribution of γ for each imputed data

matrix gu(γ |Xq
m,Xo) (see Equation 18) can be approximated by a multivariate normal

distribution with maximum likelihood estimated mean γ̂q and corresponding covariance

matrix Σq
γ .

Standard results from the multiple imputation literature imply that the posterior

distribution of γ is a summary of the estimates and covariance matrices obtained for the

q = 1, ..., Q imputed data matrices (see, for example, Van Buuren, 2012, pp. 37-38):

gu(γ |Xo) ≈ N (γ | γ,Σγ), (36)
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where

γ = 1
Q

Q∑
q=1
γ̂q. (37)

The covariance matrix Σγ is obtained using

Σγ = 1
Q

Q∑
q=1

Σq
γ (38)

and

B = 1
Q− 1

Q∑
q=1

(γq − γ)(γq − γ)t (39)

to obtain

Σγ = Σγ + (1 + 1
Q

)B. (40)

Consequently, the fit fk from Equation 18 can be approximated by

fk =
∫
γ∈Hk

N (γ | γ,Σγ)dγ. (41)

Equation 35 implies that the complexity ck from equation 22 can be computed using

ck =
∫
γ∈Hk

N (γ | γB,Σγ/b(Xo))dγ, (42)

Note that, due to the missing values the effective sample size of Xo is no longer N but No.

The fraction of missing information λ can be used to compute No = N − λN . To compute

the fraction of missing information the following quantities are needed (see, for example,

Van Buuren, 2012, pp. 41-43):

α = (1 + 1
Q

) tr(BΣ−1)/w, (43)

where w denotes the size of γ,

νold = Q− 1
α2 , (44)

νcom = N − w, (45)

νobs = νcom + 1
νcom + 3νcom(1− α), (46)

ν = νoldνobs
νold + νobs

, (47)
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leading to

λ = ν + 1
ν + 3α + 2

ν + 3 . (48)

For the Bayes factor implemented in Bain, b(Xo) = T/No. Note that, T denotes the

number of independent constraints imposed on γ in all K hypotheses under consideration,

that is, the number of independent rows in [S1, ...,SK ,R1, ...,RK ]. To given one example:

the number of independent constraints in H1 : γ1 = γ2 = γ3 and H2 : γ1 > γ2 > γ3 equals 2.

The approximate adjusted fractional Bayes factor implemented in the package Bain is

BFku = fk/ck, (49)

that is, Equation 24 with fk and ck defined in Equations 41 and 42, respectively. As

elaborated before, BFku can be used to compute BFuk and BFkk′ .

Example 1 Continued: Normal Linear Regression

This and the next three sections contain applications of the methodology developed

in this paper. In this section Example 1 will be finished. The next section will show using a

simple one variable example that the Bayes factor computed using the proposed

methodology is indeed (approximately) equal to the Bayes factor that results if it is

computed using only the observed values in Xo and Zo (cf. Equation 13 and the

subsequent derivation of fk and ck). The subsequent section will compute Bayes factor for

a complete data matrix and compare it to the Bayes factor obtained using listwise deletion,

the wrong imputation model, the correct imputation model and the correct imputation

model extended with auxiliary variables that are not part of the missing data mechanism.

The final application section will illustrate the versatility of the approach proposed by

applying it to the evaluation of informative hypotheses in the context of a confirmatory

factor model when the data contain missing values.

Example 1 will be finished using data from Stevens (1996, Appendix A) concerning

the effect of the first year of the Sesame street series on the knowledge of 240 children in
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the age range 34 to 69 months. We will use the following variables: y, the knowledge of

numbers after watching Sesame street; x1, the knowledge of numbers before watching

Sesame street; x2, the knowledge of letters before watching Sesame street; and, z, a test

measuring the mental age of children.

The Sesame street data do not contain missing values. The following missing data

mechanism was used to create missing values:

P (yi = m) = 1
1 + exp(−25 + xi1 + xi2)

; (50)

P (xi1 = m,xi2 = m) = 1
1 + exp(−32 + zi)

; (51)

and,

P (zi = m) = .10 for i = 1, ..., N. (52)

As can be seen, the probability that zi is missing is .10. The probability that both xi1 and

xi2 are missing increases if the score on zi decreases. This reflects the idea that children

with a lower mental age are less prone to attend the pretest. The probability that yi is

missing increases with decreasing xi1 and xi2. This reflects the idea that children with a

below average performance on the pre-test have a smaller probability of showing up during

the post-test. Note that, this is a missing at random (MAR) missing data mechanism

because the probability that a score on a variable is missing may depend on the scores on

the other variables that are available, but not on the missing value itself.

In Table 1 descriptives of the resulting data matrix are displayed. As can be seen,

about 25%, 15%, 15%, 10% of the observations are missing from y,x1,x2, and z,

respectively. As can also be seen, the scales on which x1 and x2 are measured are

comparable, which implies that it makes sense to compare their regression coefficients as is

done in H2. Using norm and mice we created 1000 completed data matrices in which the

missing values are imputed. At the end of this section the choice for 1000 imputations will

be elaborated.
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Summarizing the information in the 1000 completed data matrices imputed using

norm rendered

γ = [.644, .006], (53)

Σγ =

 .011 −.008

−.008 .014

 , (54)

and the fraction of missing information λ = .19. Based on these quantities, Bain evaluated

Equation 49 for H1 and H2 rendering BF1u = .00 and BF2u = 7.94, that is, there is no

support in the data for H1 and H2 is 7.94 times as likely as Hu. As expected, the Bayes

factors based on imputation using mice where virtually identical: BF1u = .00 and

BF2u = 7.97. The data matrix used and annotated R code detailing the steps in the

analyses presented in this section can be found in the on-line supplementary materials.

This relatively large number of Q = 1000 completed data matrices was chosen to

ensure a stable estimate of the fraction of missing information λ. In Table 2, λ was

computed using three different seeds to start the sampling of the missing values as

executed by mice. As can be seen, for Q = 10 the λ may differ as much as .12. When Q is

increased the differences become smaller. For Q = 500 the largest difference is about .02,

which ensures that Q = 1000 renders accurate estimates of λ. In each example in this

paper Q = 1000 will be used. Researchers applying the approach presented in this paper

are well-advised to also use a large value for Q and to verify using different seeds for the

multiple imputation package used that the value chosen renders a stable estimate of λ.

Example 2: Approximate Equality of Bayes Factors Computed from Observed

Values and Completed Data Matrices

Consider the analysis model

xi ∼ N (γ, ω) for i = 1, ..., N, (55)

and the informative hypotheses H1 : γ = 0 and H2 : γ > 0. Note that, there is only one γ

and therefore that Hu : γ is a hypothesis without restrictions on this gamma. Data will be
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generated such that the sample average of the observed values in x is x ∈ {−.2, 0, .2, .5},

and the sample standard deviation of the observed values is s = 1, the number of observed

values is No = 30 and Nm = 20 missing values are added, that is, the missing values are

MAR (in this case in fact missing completely at random). This setup allows for inference

with (that is, based on Xo,Xm) and without (that is, based on Xo) imputation of the

missing values.

This setup enables the illustration of what was shown by means of equations (cf.

Equation 13 and the subsequent derivation of fk and ck) earlier in this paper: if the

missing values are MAR the Bayes factor computed using only the observed values and the

Bayes factor computed from multiple completed data matrices are approximately identical.

Note that, results are only approximately equal because the posterior distribution used for

imputation is only asymptotically equal to the posterior distributions used to compute

Bayes factors. Note furthermore, that the approximate equality was shown in general, but

can only be illustrated using this simple setup because in more complicated setups like, for

example, Example 1, the Bayes factor can be computed using the multiple imputation

approach proposed in this paper, but there is no way in which the Bayes factor can directly

be computed from the observed values like in the simple example presented in this section.

Consider, for example, the regression model from Example 1 with missing values in y, x1,

x2, and the auxiliary variable z needed to achieve MAR. Neither BayesFactor nor Bain

can be used to compute Bayes factors using these date because they require the data to be

complete. However, as elaborated earlier in this paper, this can be solved based on multiple

imputation of the missing values.

Columns 3, 4, and 5 of Table 3 contain the input needed to use Bain for the

evaluation of H1 and H2 (cf. Equations 41 and 42): γ; Σγ; and, λ. Each of these are

estimated based on 1000 imputations of the missing values using mice. Note that, the

imputation model was identical to the analysis model, and therefore the same irrespective

of whether a joint or full conditional specification is used. As can be seen, the estimates
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based on analysis of the observed values and multiple imputation are very similar (to two

decimal places), but the fraction of missing information λ is slightly overestimated. The

resulting values of the Bayes factors based on the observed values and multiple imputation

(Equation 49) for BF1u (column 5) and BF2u (column 6) are similar. With a better

estimate of λ they would have been virtually the same. Nevertheless, this simple example

shows that the Bayes factor computed from the observed values can adequately be

approximated by the imputed data based Bayes factor because the differences that can be

observed do not change the interpretation of the resulting numbers.

Using the function ttestBF from the BayesFactor R package, the Bayes factors BF1u

and BF2u (cf. Equation 29) are computed using only the observed values multiple

imputation. In this package the analysis model is reparameterized as xi ∼ N (
√
ωγ, ω),

where γ denotes the standardized effect size, hu(γ) ∼ Cauchy(0, .707) where .707 is the

prior scale, and h(ω) = 1/ω. As can be seen in the last two columns of Table 3, there is a

close correspondence between the Bayes factors based on the observed values and multiple

imputation.

In Figure 1 the BF q
2u for q = 1, ..., 1000 as computed using the BayesFactor R

package are displayed for x = 0, that is, one data matrix with missing values that was

imputed 1000 times and for each imputed data matrix the Bayes factor was computed. As

can be seen, using single imputation to obtain the Bayes factor is not a good idea because

the BF q
2u vary between 0 and 2.0. Using the BF q

2u based on only one of these imputations

would render a Bayes factor that is essentially a random number from the interval 0 to 2.0.

which can easily be substantially different from the correct value 1.0.

Note that, the codes used to obtain the results in Table 3 and Figure 1 can be found

in the on-line supplementary materials. Note furthermore that, the analyses presented in

this section were also executed using No equal to 40 and 20 and Nm equal to 10 and 30,

respectively. The results were completely in line with those described above.



COMPUTING BAYES FACTORS 29

Example 3: The Effect of the Choice of the Auxiliary Variables

This section will illustrate the effect of the choice of the auxiliary variables on the

Bayes factor computed from data with missing values. One data matrix without missing

values is used consisting of a dependent variable y = [y1, ..., yi, ..., yN ], three potential

auxiliary variables z1 = [z11, ..., zi1, ..., zN1], z2 = [z12, ..., zi2, ..., zN2], and

z3 = [z13, ..., zi3, ..., zN3], and a grouping variable x = [x1, ..., xi, ..., xN ], that attains the

value 0 for the members of Group 1 and the value 1 for the members of Group 2. For both

groups, the means and covariance matrix of the dependent and auxiliary variables are

displayed in Table 4.

The analysis model of interest in this example is

yi = α0 + α1Di + ei with ei ∼ N (0, σ2), (56)

that is, a two group ANOVA in which α1 denotes the difference in means between Groups 2

and 1 because Di equals 0 if person i is a member of Group 1 and 1 if person i is a member

of Group 2. The hypotheses of interest are H1 : α1 = 0 and H2 : α1 > 0. Missing data were

created such that it holds in Group 1 that the smaller zi1 the larger the probability that yi

is missing and in Group 2 the larger zi1 the larger the probability that yi is missing:

P (yi = m | Di = 0) = 1
1 + exp(zi1)

, (57)

and

P (yi = m | Di = 1) = 1
1 + exp(−zi1)

. (58)

This rendered 24 missing values in y for both the members of Group 1 and Group 2.

The hypotheses H1 and H2 were evaluated using six scenarios:

1. Using the full data before the creation of missing values.

2. Using the data remaining after list-wise deletion of the cases with missing values.

3. Using the data after multiple imputation of the missing values using y and x

without auxiliary variables in a multivariate normal imputation model (c.f. Equation 3).
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Note that, x can be modeled in this manner only because it does not contain missing

values. Would it have contained missing values the imputation model should be one of the

family of general location models (Shafer, 1997, Chapter 9).

4. Like Scenario 3 but now using y, x, and the variable predicting the missing values

z1.

5. Like Scenario 3 but now using y, x, z1, and the variables not predicting the

missing values z2 and z3.

6. Like Secnario 3 but now using y, x, and only the variables not predicting the

missing values z2 and z3.

The results are displayed in Table 5. The following can be observed:

1. When the full data are used, the support in the data is substantially larger for H2

than for H1 (BF21=102.62). This is not surprising, because α̂1 = .64 and is standard

deviation is
√
.033 = .18. Note that, the results obtained in Scenarios 2 through 6 cannot

straightforwardly be compared to the full data results because here the fraction of missing

information equal 0, that is, No = N = 100, while in the other scenarios the fraction of

missing information is substantially larger than 0. This will lead to a larger standard

deviations for α̂1 and smaller Bayes factors in the other scenarios. What can be learned

from the full data is that scenarios that adequately account for the missing data

mechanism should render estimates of α̂ close to .64, should render standard deviations

larger than .18, and should render Bayes factors favoring H2.

2. Since the missing data mechanism (missingness depends on z1) is not accounted

for in case of listwise deletion and imputation using only y and x the missing values are

not MAR. This can for Scenarios 2 and 3 clearly be seen from α̂1 = .39 (too small) and a

BF21 slightly favoring H1 instead of H2. This implies that inadequate representation of the

missing data mechanism in the imputation model will render incorrect inferences.

3. As noted earlier, what is often done in practice is construction of an imputation

model using the variables from the analysis model augmented with auxiliary variables that
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are expected to be good predictors of the variables in the analysis model containing

missing values. In Scenario 4 the imputation model uses y, x, and the variable z1 which

explains the missing values. As can be seen, with the correct imputation model an accurate

estimate α̂1 = .61 is obtained and BF21 = 3.18 correctly indicates a preference for H2

irrespective of the fact that 52% of the information in the data is missing leading to a

standard deviation of
√
.077 = .28 which is (and should be) substantially larger than .18

(the standard deviation obtained using the full data).

4. Scenario 5 is an extension of Scenario 4 in which also z2 and z3 are added to the

variables in the imputation model. This is in line with Shafer and Graham (2002) who

write "Although it is not necessary to have a scientific theory underlying an imputation

model [which would imply that researchers know that z1 causes the missing values], it is

crucial for that model to be general enough to preserve effects of interest in later analyses

[that is, use the variables in the analysis model and variables related to the variables

containing missing values]." As can be seen, even if "unnecessary" variables are included in

the imputation model, an accurate estimate α̂1 = .65 is obtained and BF21 = 6.36 correctly

prefers H2 over H1.

5. Continuing Scenario 5, even if z1 is not part of the imputation model but it does

contain variables like z2 and z3 that are related to the variables containing missing values ,

an adequate estiamte α̂1 = .60 is obtained, and BF21 = 4.64 expresses and preference for

H2. This is in line with "... that [imputation] model to be general enough to preserve

effects of interest ..." (Shafer and Graham, 2002), that is, the imputation model does not

necessarily have to contain the variables causing the missing values.

In summary, even if the missing data mechanism is unknown, using the variables in

the analysis model extended with variables related to the variables containing missing

values, may very well render adequate estimates of the effects of interest and Bayes factors

adequately expressing preference for the hypotheses of interest. However, although

researchers can (and should) argue in favor of their imputation model, MAR can never be
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proven (Shafer and Graham, 2002) and all inferences are always conditional on the

assumption of MAR. This does not only hold for the computation of Bayes factor from

data with missing values, this holds for all inferences using data with missing values.

It is important to note that the Bayes factor is a quantification of information in a

data set and not an estimate of a population quantity. Therefore, the uncertainty in the

Bayes factor computed from data with missing values consists of two parts: (1) uncertainty

caused by the fact that the missing data mechanism is unknown which has been elaborated

in this section; and (2) Monte Carlo error. The latter can be controlled by choosing an

appropriate value for Q as was elaborated at the end of the discussion of Example 1.

Stated otherwise, there is no uncertainty due to sampling. Therefore, the variation in

Bayes factors that can be observed in Figure 1 does not reflect uncertainty with respect to

the value of the Bayes factor, it is a measure of the amount of information that is missing

due to the presence of missing values: the larger the variation in Bayes factors computed

for each imputed data matrix, the larger the amount of missing information.

Example 4: Confirmatory Factor Analysis

The Holzinger and Swineford (1939) dataset consists of mental ability scores of 301

seventh- and eighth-grade children. A subset with nine variables is widely used in the

literature. It contains scores on: visual perception x1; cubes x2; lozenges x3; paragraph

comprehension x4; sentence completion x5; word meaning x6; speeded addition x7;

speeded counting of dots x8; and speeded discrimination of straight and curved capitals x9.

A common analysis model for these data is the following confirmatory factor model:

xpi = αp + λpt1i + εp for p = 1, 2, 3,

xpi = αp + λpt2i + εp for p = 4, 5, 6, (59)

xpi = αp + λpt3i + εp for p = 7, 8, 9,
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where: t1 denotes a visual factor, t2 a textual factor, and t3 a speed factor with
t1i

t2i

t3i

 ∼ N



0

0

0

 ,


1 γ12 γ13

γ12 1 γ23

γ13 γ23 1



 . (60)

Note that, the γ = [γ12, γ13, γ23]contains the correlations between the factors and ω

contains the intercepts αp, the factor loadings λp, and the residual variances from

εp ∼ N (0, σ2
p). The informative hypothesis of interest for this data set is

H1 : γ12 > γ23, γ13 > γ23, (61)

which expresses that the correlation between the textual and speed factor is the smallest of

the three correlations. The Holzinger and Swineford (1939) data will be used to illustrate

that the approach proposed in this paper can also be used for other models than multiple

regression. Missing data where created by replacing each observation by a missing with a

probability of .20. Descriptive statistics are presented in Table 6.

The imputation model used was analogous to the one used for the multiple regression

example displayed in Equation 3, that is, a multivariate normal distribution for the nine

mental test scores. In the context of structural equation modeling and thus also the

confirmatory factor analysis model displayed in Equations 59 and 60 this implies that the

missing values are imputed under a saturated model, that is, a model that will perfectly

reproduce the observed covariance matrix of the nine mental test scores. As is well known

from the structural equation modeling literature (see, for example, Bollen, 1989), such a

model encompasses the analysis model, that is, the parameters of the analysis model are a

function of the parameters of the imputation model. Furthermore, as is elaborated in

Graham (2003) the analysis model can be extended into a “saturated correlations model”

which is equivalent to the “saturated imputation model” to account for the presence of

auxiliary variables. Stated otherwise, the parameters of the imputation model can be

separated into the parameters of the analysis model plus extra parameters accounting for

the presence of auxiliary variables, as is required for the approach presented in this paper.
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Using mice to obtain 1000 imputed data matrices rendered γ̂ = .[39, .47, .26].

Furthermore,

Σγ =


.0056 −.0003 .0012

−.0003 .0230 .0061

.0012 .0061 .0065

 , (62)

and the fraction of missing information is .42, that is, the effective sample size

N0 = 301− .42× 301. Note that, about 20% missing values and a fraction of missing

information of .42 may seem out of line. However, in the case of the classical correlation

γxy where the odd-numbered persons have a missing value for y and the even numbered

persons have a missing value for x, there are 50% missing values, while the fraction of

information missing with respect to γxy equals 1.0. Feeding this information into Bain

rendered BF1u = 3.58, that is, there is some support in the data for H1. If norm is used for

imputation the resulting Bayes factor was almost identical, that is, BF1u = 3.58. Note that

the codes used to obtain the results presented in this section can be found in the on-line

supplementary materials.

Discussion

The computation of Bayes factors used for hypotheses testing from data with missing

values has not previously received attention in the literature. In this paper two specific

Bayes factors have been presented. The adjusted fractional Bayes factor has been

developed to evaluate informative hypotheses in the context of a wide variety of statistical

models. It is implemented in the R package Bain

(http://informative-hypotheses.sites.uu.nl/software/) which is currently being

included in JASP (https://jasp-stats.org/). The R package BayesFactor

(http://bayesfactorpcl.r-forge.r-project.org/) is a versatile tool for the evaluation

of null-hypotheses and is also included in JASP. The results presented in this paper extend

the applicability of these Bayes factors for hypothesis evaluation, because empirical data

often contain missing values. As is elaborated in Appendix A, the derivations presented in
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this paper can also be applied to other Bayes factors. However, since these are not

implemented in software packages, or, the software package does not render the necessary

information, these can not straightforwardly be used by psychological researchers.

It has to be noted that new options keep being added to R packages that can be used

for multiple imputation. For example, recently, multiple imputation for two level models

has been added to mice Also both Bain and BayesFactor are packages that are actively

maintained and to which new options keeop being added. The interested reader is

well-advised to monitor new developments in order to be up to date as to what is and isn’t

possible with these packages.
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Appendix A: Other Bayes Factors

Fractional Bayes Factors

The fractional Bayes factor (O’Hagan, 1995) is different from the adjusted fractional

Bayes factor in that the location of the fractional prior is not adjusted. It can be computed

using Equations 17 and 21 (the latter without adjustment of the prior mean, that is,

γadj = 0) based on the following posterior and prior distributions:

gu(θ |Xm,Xo) ∝ `(Xm,Xo | θ)1−b(Xm,Xo)`(Xm,Xo | θ)b(Xm,Xo)hu(θ), (63)

and,

hu(θ |Xm,Xo) ∝ `(Xm,Xo | θ)b(Xm,Xo)hu(θ), (64)

with hu(θ) a standard non-informative prior:

BFku ≈
1
Q

∑Q
q=1

∫
θ∈Hk

gu(θ |Xq
m,Xo)dθ

1
Q

∑Q
q=1

∫
θ∈Hk

hu(θ |Xq
m,Xo)dθ

=
1
Q

∑Q
q=1 f

q
k

1
Q

∑Q
q=1 c

q
k

, (65)

that is, it is the ratio of the average of the fits f qk and the average of the complexities cqk

computed with respect to Q imputed data matrices. Because the prior mean is not
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adjusted, the fractional Bayes factor is only suited for the evaluation of informative

hypotheses specified using equality constraints (Mulder, 2014). Since it is not implemented

in a software package, it is not readily available.

Bayes Factors Based on Expected Posterior Priors

Perez and Berger (2002) discuss Bayes factors based on expected posterior priors.

They can be computed using Equations 17 and 21 (the latter without adjustment of the

prior mean, that is, γadj = 0) based on the following posterior and prior distributions::

gu(θ |Xm,Xo) ∝ `(Xm,Xo | θ)hu(θ | mts(Xm,Xo)), (66)

where hu(θ | mts(Xm,Xo)) denotes the expected posterior prior which is based on

multiple minimal training samples (mts, Berger and Pericchi, 1996; 2004) obtained from

Xm,Xo. In close analogy with the fractional Bayes factor where a fraction of the

likelihood is used to specify the prior distribution, it follows that

BFku ≈
1
Q

∑Q
q=1

∫
θ∈Hk

gu(θ |Xq
m,Xo)dθ

1
Q

∑Q
q=1

∫
θ∈Hk

hu(θ | mts(Xq
m,Xo))dθ

=
1
Q

∑Q
q=1 f

q
k

1
Q

∑Q
q=1 c

q
k

, (67)

that is, the ratio of the average of the fits f qk and the average of the complexities cqk

computed with respect to Q imputed data matrices. Mulder, Hoijtink, and Klugkist (2010)

show that this Bayes factor is only suited for the evaluation of informative hypotheses

specified using equality constraints. Since it is not implemented in a software package, it is

not readily available.

Mulder, Hoijtink, and de Leeuw (2012) elaborate how the expected posterior prior

can be adjusted such that it is suited for the evaluation of informative hypotheses specified

using equality and inequality constraints. This prior is called the approximate adjusted

expected posterior prior hu(w(θ) | mts(Xm,Xo)), where w(.) denotes a transformation of

θ such that the prior distribution of θ is normally distributed with mean θB and restricted

covariance matrix τB. This results in:

BFku ≈
∫
θ∈Hm

1
Q

∑Q
q=1 gu(θ |Xq

m,Xo)dθ∫
θ∈Hm

1
Q

∑Q
q=1 hu(w(θ) | mts(Xq

m,Xo))dθ
=

1
Q

∑Q
q=1 f

q
k (w(θ))

1
Q

∑Q
q=1 c

q
k(w(θ))

, (68)
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where the notation stresses that the fit f qk (w(θ)) and the complexity cqk(w(θ)) are

computed using the q-th imputed data matrix and a w(θ) that is based on the information

in Xo and therefore the same for each imputed data matrix.

The approximate adjusted expected posterior prior is implemented in the software

package BIEMS (http://informative-hypotheses.sites.uu.nl/software/) As is shown

in Equation 68, what is needed to compute the corresponding Bayes factor from data with

missing values are the fit and complexity based on a w(θ) that is the same for each of the

q = 1, ..., Q imputed data matrices. BIEMS only renders the fit and complexity (and only for

inequality constrained hypotheses) based on wq(θ), that is, the transformation is

determined using the q-th imputed data matrix and not using only the observed values.

Therefore, BIEMS can not be used to compute Equation 68. Researchers currently using

BIEMS for the evaluation of informative hypotheses are advised to change to Bain or

BayesFactor if their data are incomplete.

Appendix B: Derivation of the Bayes Factor for Hypothesis Evaluation

Chib’s (1995) representation of the Bayes factor comparing the informative

hypothesis Hk with the unconstrained hypothesis Hu can be written as:

BFku =
p(Xo,Zo | θ,η)hk(γ + γadj,ω,η |Xo,Zo)

gk(θ,η |Xo,Zo)
/

p(Xo,Zo | θ,η)hu(γ + γadj,ω,η |Xo,Zo)
gu(θ,η |Xo,Zo)

, (69)

where, hk(.) and hu(.) denote the prior distribution of the parameters for the informative

and unconstrained hypotheses, respectively, and gk(.) and gu(.) denote the posterior

distribution for the informative and unconstrained hypotheses, respectively.

As is highlighted in Equation 4, Hk for k = 1, ..., K are hypotheses obtained by

imposing equality and/or inequality constraints on a parameter vector γ = [γ1, ..., γJ ].

Each of these hypotheses is nested with Hu : γ1, ..., γJ , that is, an hypothesis without

constraints on the parameters.
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The prior distributions hk(.) and gk(.) are those parts of hu(.) and gu(.), respectively,

in agreement with Hk (Hoijtink, 2012, p. 59), that is,

hk(γ + γadj,ω,η |Xo,Zo) =

hu(γ + γadj,ω,η |Xo,Zo)I(γ ∈ Hk)∫
γ ,ω,η hu(γ + γadj,ω,η |Xo,Zo)I(γ ∈ Hk)dγdωdη

=

hu(γ + γadj,ω,η |Xo,Zo)I(γ ∈ Hk)
ck

, (70)

where I(.) equals one is the argument is true and zero otherwise, and,

gk(θ,η |Xo,Zo) = gu(θ,η |Xo,Zo)I(θ ∈ Hk)∫
θ,η gu(θ,η |Xo,Zo)I(θ ∈ Hk)dθdη

=

gu(θ,η |Xo,Zo)I(θ ∈ Hk)
fk

. (71)

Substitution of hk(.) and gk(.) in Equation 69 with Equation 70 and 71, respectively,

renders

BFku = fk/ck. (72)
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Table 1

Desciptive statistics for the Sesame Street Data with Missing Values

Variable Mean Minimum Maximum Number Missing

y 33.84 7 54 57

x1 22.52 2 52 37

x2 16.58 1 55 37

z 46.77 27 99 27



COMPUTING BAYES FACTORS 45

Table 2

The Choice of Q and the Stability of λ

Q Seed = 999 Seed = 1234 Seed = 4321

10 .402 .276 .285

50 .272 .291 .299

100 .309 .278 .312

500 .300 .289 .305

1000 .308 .298 .293
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Table 3

Bayes Factors Computed Using only the Observed Values and Multiple Imputation with the

Packages Bain and BayesFactor

Bain BayesFactor

x γ Σγ λ BF1u BF2u BF1u BF2u

observed -.2 -0.20 .03 3.01 .27 2.98 .30

imputed -.2 -0.20 .03 .45 3.03 .29 2.94 .30

observed 0 .00 .03 5.47 1 5.14 1

imputed 0 .00 .03 .45 5.26 1 5.09 1.02

observed .2 .20 .03 3.01 1.72 2.98 1.70

imputed .2 .20 .03 .45 2.87 1.73 2.78 1.72

observed .5 .50 .03 .13 1.99 .23 1.99

imputed .5 .50 .03 .45 .13 1.99 .19 1.99
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Table 4

Per Group, Means and Covariance Matrix of the Dependent and Auxiliary Variables

Group 1 Group 2

Variable Mean Covariance Matrix Mean Covariance Matrix

y -.20 .72 .44 .91

z1 -.03 .18 .74 -.29 .32 .98

z2 -.14 .40 .36 1.16 .02 .60 .51 1.25

z3 -.15 .32 .32 .51 .80 -.02 .57 .50 .86 1.36
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Table 5

Key Quantities and Bayes Factors for Six Scenarios

Scenario α̂1 Σα1 λ BF1u BF2u BF21

1 .64 .033 0 .02 2 102.62

2 .39 .070 .43 2.39 1.86 .78

3 .39 .074 .51 2.48 1.85 .75

4 .61 .077 .52 .62 1.97 3.18

5 .65 .067 .45 .31 1.98 6.36

6 .60 .063 .43 .43 1.98 4.64
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Table 6

Desciptive statistics for the Holzinger and Swineford (1939) Data

Variable Mean Minimum Maximum Number Missing

x1 4.88 .67 8.5 53

x2 6.07 2.25 9.25 59

x3 2.30 .25 4.50 72

x4 3.07 .00 6.33 43

x5 4.35 1.00 6.50 74

x6 2.16 .14 6.14 62

x7 4.23 1.87 7.44 57

x8 5.48 3.50 8.30 58

x9 5.32 2.78 9.25 63
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Figure 1 . The distribution of BF q
2u for q = 1, ..., 1000 Imputations of One Data Set with

Missing Values for which x = 0.




