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Abstract

The generalized order-restricted information criterion (GORIC) is a generalization of
the Akaike information criterion (AIC) such that it can evaluate hypotheses that take
on specific, but widely applicable, forms (namely, closed convex cones) for multivariate
normal linear models. It can examine the traditional hypotheses H0 : β1,1 = · · · = βt,k

and Hu : β1,1, . . . , βt,k and hypotheses containing simple order restrictions Hm : β1,1 ≥
. . . ≥ βt,k, where any “≥” may be replaced by “=”, βh,j denotes a parameter for the hth
dependent variable and the jth predictor in a t-variate regression model with k predictors
(which might include the intercept), and m is the model/hypothesis index. But, the
GORIC can also be applied to restrictions of the form Hm : R1β = r1, R2β ≥ r2, with
β a vector of length tk, R1 a cm1 × tk matrix, r1 a vector of length cm1, R2 a cm2 × tk
matrix, and r2 a vector of length cm2. It should be noted that [R′

1, R
′
2]

′ should be of
full rank when [r′1, r

′
2]

′ #= 0. In practice, this implies that one cannot examine range
restrictions (e.g., 0 < β1,1 < 2 or β1,2 < β1,1 < 2β1,2) with the GORIC. A Fortran 90
program is presented, which enables researchers to compute the GORIC for hypotheses
in the context of multivariate regression models. Additionally, an R package called goric
is made by Daniel Gerhard and the first author.

Keywords: Fortran 90, inequality constraint, model selection, order restriction, R, regression
model.

1. Introduction

Researchers often have hypotheses with respect to the relation among model parameters.
Consider, for example, the simple regression model y = β0 + β1x1 + β2x2 + β3x3 + ε, where
ε is normally distributed with mean 0 and variance σ2. Hypotheses of interest could be
H1 : β1 = β2 = β3, H2 : β1 = β2,β3, and H3 : β1,β2 = β3. One can employ information
criteria to select the best of a set of hypotheses. The Akaike information criterion (AIC; Akaike
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1973) is one such criterion. However, a more flexible class of hypotheses can be evaluated
if, in addition to equality constraints, order restrictions can be used in the formulation of
hypotheses (e.g., H1 : β1 ≥ . . . ≥ βk and H2 : β1 = . . . = βk′ ≥ . . . ≥ βk for 1 < k′ < k).
The AIC is not suited for the evaluation of order-constrained hypotheses. In the context of
analysis of variance (i.e., yij = βj + εij , with i = 1, . . . , Nj , j = 1, . . . , k, βj the mean for
group j, and εij ∼ N(0,σ2)), the order-restricted information criterion (ORIC), proposed by
Anraku (1999), can be used to select the best of a set of hypotheses that can be written as
simple order restrictions (i.e., Hm : β1 ≥ . . . ≥ βk, where any “≥” may be replaced by “=”).
Kuiper, Hoijtink, and Silvapulle (2011) generalized the ORIC, called the GORIC, such that it
can be applied to a more general form of order restrictions, namely Hm : Rβ ≥ 0 for m ∈ M,
where M is the set of hypothesis indices, β a vector of length k, and R a cm × k matrix.
Special cases of these matrix order restrictions are the simple order (i.e., Hm : β1 ≥ . . . ≥ βk)
and the tree order (i.e., Hm : β1 ≥ β2, . . . ,β1 ≥ βk). Notably, simple order restrictions can
be written as

Hm :





1 −1 0 0 . . . 0 0
0 1 −1 0 . . . 0 0
... . . .

...
0 0 0 0 . . . 1 −1









β1
β2
β3
β4
...
βk−1

βk





≥





0
0
...
0




,

which equals β1 − β2 ≥ 0, β2 − β3 ≥ 0, . . ., βk−1 − βk ≥ 0 and thus Hm : β1 ≥ . . . ≥ βk; and
tree order restrictions can be written as

Hm :





1 −1 0 0 . . . 0 0
1 0 −1 0 . . . 0 0
...

... . . .
1 0 0 0 . . . 0 −1









β1
β2
β3
β4
...
βk−1

βk





≥





0
0
...
0




,

which equals Hm : β1 ≥ β2, . . . ,β1 ≥ βk. Kuiper, Hoijtink, and Silvapulle (2012) extend
the use of the GORIC to univariate and multivariate normal linear models with not only
hypotheses of the type Hm : Rβ ≥ 0 (closed convex cone), but also Hm : Rβ ≥ r (relocated
closed convex cone), where β is a vector of length tk containing the parameters in a t-variate
normal linear model, with k the number of predictors (which can include an intercept), as
elaborated below. The more general expression for these two types of hypotheses is Hm :
β ∈ Cm, where Cm is a closed convex cone or a relocated one. The hypotheses of interest and
therewith the closed convex cones are further discussed in Section 2.2.

In the next section, the GORIC will be presented in the context of multivariate regression
models. The GORIC comprises a likelihood part and a penalty part. The likelihood is
computed using order-restricted maximum likelihood estimators (MLEs), that is, MLEs in
agreement with the hypothesis at hand. The iteration process employed to obtain the order-
restricted maximum likelihood estimators is described in Section 3. In Section 4, we will
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elaborate on the penalty part. Section 5 illustrates the application of the GORIC in the
context of univariate and multivariate analysis of variance. Subsequently, Section 6 discusses
GORIC weights, which are easier to interpret than the GORIC values themselves. Appendix A
contains a user manual for the software in Fortran 90. Running the Fortran 90 files result in
a stand-alone program, namely an .exe file, which can also be found on http://staff.

fss.uu.nl/RMKuiper. In addition, an R package, called goric, is made available (Gerhard
and Kuiper 2011). This will not be discussed here, more details can be found at http:

//cran.r-project.org/web/packages/goric/goric.pdf.

2. The GORIC

In this section, we provide the GORIC applicable to a wide range of hypotheses (namely,
those of the form Hm : β ∈ Cm) formulated for a t-variate regression model. The derivation is
shown in Kuiper et al. (2012). First, we briefly discuss the t-variate regression model. Then,
we give the expression of the GORIC. Finally, we elaborate on the hypotheses that can be
evaluated by it.

2.1. The t-variate regression model

A multivariate regression model with t dependent variables can be written as

y1i = β1,1x1i + . . .+ β1,kxki + ε1i
...

yti = βt,1x1i + . . .+ βt,kxki + εti

(1)

where yhi denotes the score of the ith person on the hth dependent variable for i = 1, . . . , N
and h = 1, . . . , t. The x variables are predictors. They can be dummy variables representing
group membership or continuous predictors, where xji then reflects the score of the ith person
on the jth predictor for j = 1, . . . , k. The relationship between xji and yhi (controlled for the
other predictors) is denoted by βh,j . Finally, it is assumed that




ε1i
...
εti



 ∼ Nt








0
...
0



 ,Σ =




σ2
1 · · · σ1t
...

. . .
...

σ1t · · · σ2
t







 .

It is noteworthy that the βs associated with x variables regarding the same dependent variable
are only comparable when the corresponding x variables are standardized. Moreover, βs
associated with x variables belonging to different dependent variables can solely be examined
if both the dependent variables and the x variables are standardized.

2.2. The hypotheses of interest and (relocated) closed convex cones

Let β = (β1,1, . . . ,β1,k, . . . ,βt,1, . . . ,βt,k) and βl the lth element of β for l = 1, . . . , tk. The
GORIC can be applied to hypotheses that are closed convex cones or relocated ones; both
denoted by Cm. In this article, we will focus on

Hm : R1β = r1, R2β ≥ r2, (2)
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where R1 is a cm1 × tk matrix, R2 a cm2 × tk matrix, r1 a vector of length cm1, and r2 a
vector of length cm2. For closed convex cones it holds true that r1 = r2 = 0. Special cases
of closed convex cones are the simple order, the tree order, and the matrix order (Silvapulle
and Sen 2005, pp. 82). In case of a relocated closed convex cone, that is, for [r′1, r

′
2]
′ #= 0,

a requirement is needed (see Kuiper et al. (2012) and Section 4): R = [R′
1, R

′
2]
′ is of full

rank. Note that full rank of R may be obtained by discarding redundant restrictions. For
example, a set of restrictions containing βl ≥ r21,βl ≤ r22 is not a relocated closed convex
cone for r21 #= r22, since R is not of full rank and there are no redundant restrictions. For
βl ≥ r21,βl′ ≥ r22,βl + βl′ ≥ r23 for l #= l′, R is not of full rank either. However, when
r21 + r22 ≥ r23, βl + βl′ ≥ r23 is redundant. In case this redundant restriction is discarded, R
is of full rank, that is, Hm : βl ≥ r21,βl′ ≥ r22 is a relocated closed convex cone.

2.3. The GORIC

The GORIC is, like the AIC and the ORIC of Anraku (1999), based on the Kullback–Leibler
(KL) discrepancy (Kullback and Leibler 1951). The KL discrepancy is ideally estimated by
the maximum log-likelihood subject to the hypothesis at hand, that is, the log-likelihood
evaluated at the maximum likelihood estimators (MLEs) which are in agreement with the
(order-)restrictions (referred to as order-restricted MLEs and denoted by β̃m and Σ̃m). Since
this is not a good estimator, a bias results which is adjusted for by a penalty part (denoted by
PTm). More precisely, the penalty is based on the expectation of the difference between the
maximum log-likelihood subject to the hypothesis at hand and the expected log likelihood
at (β̃m, Σ̃m); more details can be found in Kuiper et al. (2012). In case of the AIC, where
solely equality restrictions (of the form βhj = βh′j′ for h′ = 1, . . . , t and j′ = 1, . . . , k) are
evaluated, the penalty equals the number of distinct parameters. When order restrictions
are examined, the bias does not reduce to a constant, but to a term with a certain null
distribution, namely the chi-bar square distribution (Kuiper et al. 2011, 2012). This is a
weighed chi square distribution, where the weights are called chi-bar square weights or level
probabilities. A level probability (denoted by wl(tk,W,Hm) for level l) is the probability that
there are l levels among the tk order-restricted MLEs, which are in accordance with Hm,
given that the parameters β are generated from its null distribution: a normal distribution
with a mean vector of zeros and covariance matrix W (see also Anraku (1999); Silvapulle and
Sen (2005, pp. 77–83); Robertson, Wright, and Dykstra (1988, pp. 69)). Stated otherwise,
it is the probability that the parameter space in accordance with the active constraints in
Hm is of dimension l. Notably, equality restrictions are always active constraints and each
(non-redundant) one reduces the dimension by one. Hence, in case there are tk regression
parameters, as in (1), βhj = βh′j′ lowers the dimension of the order-restricted MLEs of β to
tk − 1. Note that the same holds for equalities like βhj = 2βh′j′ even though the MLEs do
not have the same value. Thus, the penalty is not based on the number of distinct values,
but on active / binding constraints. The level is the number of parameters minus the number
of active constraints. In case of order restrictions, there are certain probabilities that the
restriction is binding / is active / does not hold. For instance, in a univariate regression
model with three regression parameters and H : β11 ≥ β12,β13, the parameter β11 will (under
the null distribution) half of the time be greater than β12 (i.e., half of the time there are 3
levels); in the other half β11 will be lower than β12, in which case the order-restricted MLE’s
will be set equal (in this example) such that is in agreement with the hypothesis, that is, the
constraint will be active (i.e., in the other half there are 2 levels). This yields a penalty of



Journal of Statistical Software 5

0.5×3+0.5×2 = 2.5, that is, there is a reduction of a half parameter in the parameter space.
Next we will give the expression for the GORIC.

Let

Y =




y11, . . . , yt1
...

...
y1N , . . . , ytN



 ,

yi = [y1i, . . . , yti]
′,

X =




x11, . . . , xk1
...

...
x1n, . . . , xkn



 , (3)

xi = [x1i, . . . , xki]
′,

B =




β1,1, . . . , βt,1
...

...
β1,k, . . . , βt,k



 .

According to Kuiper et al. (2012), it holds true for t-variate regression models with Hm : β ∈
Cm that

GORICm = −2 log f(Y |X, B̃m, Σ̃m) + 2 PTm, (4)

with

log f(Y |X, B̃m, Σ̃m) = − tN

2
log{2π}− N

2
log |Σ̃m|− 1

2

N∑

i=1

ε′i

(
Σ̃m

)−1
εi,

and

PTm = 1 +

tk∑

l=1

wl(tk,W,Hm) l,

where log f(Y |X, B̃m, Σ̃m) is the log-likelihood, B̃m and Σ̃m are the order-restricted maximum
likelihood estimators of B and Σ, respectively, PTm is the penalty part, wl(tk,W,Hm) denotes
the level probability for level l, and

εi = yi − B̃m′xi,

W = Σ̂⊗ [X ′X]−1, (5)

with

Σ̂ = N−1(Y −XB̂)′(Y −XB̂) (6)

and

B̂ = (X ′X)−1X ′Y.

Hence, Σ̂ and B̂ are the (unrestricted) maximum likelihood estimators of Σ and B, respec-
tively. The derivation of the penalty can be found in Kuiper et al. (2012). In that, Σ is
assumed to be known up to a positive constant, that is, Σ = σ2S with S a known t× t matrix
and σ2 a constant which represents the variance when t = 1. Since Σ is often not known, it is
estimated by Σ̂, see Equation (6). The GORIC is easily applied, namely the hypothesis/model
Hm (see Equation (2)) with the lowest GORIC value (see Equation (4)) is the preferred one.
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In the next two sections, we will subsequently elaborate upon the order-restricted maximum
likelihood estimators B̃m and Σ̃m and the penalty term PTm.

3. Order-Restricted maximum likelihood estimators

The order-restricted maximum likelihood estimators, B̃m and Σ̃m, are obtained by

min
β∈Hm,Σ

N∑

i=1

(yi − B̃m′xi)
′Σ−1(yi − B̃m′xi).

From this, it follows that

B̃m = arg min
β∈Hm

N∑

i=1

(yi −B′xi)
′
(
Σ̃m

)−1
(yi −B′xi), (7)

Σ̃m = N−1(Y −XB̃m)′(Y −XB̃m). (8)

It should be stressed that in univariate regression (i.e., for t = 1) the β parameters do not
depend on Σ̃m = σ̃2

m. In multivariate regression (i.i., t > 1), B̃m depends on the unknown
Σ̃m and Σ̃m on the unknown B̃m. Therefore, iterations are required to calculate them. The
iteration process comprises the following steps:

1. Set B̃m
0 equal to B̂ = (X ′X)−1X ′Y , the (unrestricted) maximum likelihood estimator

of B. Note that any value for B̃m
0 can be chosen. We employ B̂ to increase the speed

of convergence and, therefore, to reduce computing time.

2. Optimize Σ̃m
p by substituting B̃m for B̃m

p−1 in Equation (8) for p = 1, . . . , P .

3. Optimize B̃m
p by replacing Σ̃m with Σ̃m

p in Equation (7) for p = 1, . . . , P . For the calcu-

lation of B̃m, one can use a quadratic programming algorithm like the IMSL subroutine
QPROG (Visual Numerics 2003, pp. 1307–1310) in Fortran 90.

4. Continue steps 2 and 3 until convergence is reached (at step P ) and set B̃m and Σ̃m

equal to B̃m
P and Σ̃m

P , respectively. We base the convergence criterion on the values of
the parameter estimates. Namely, we stop iterating when the absolute values of the
elements of B̃m

p − B̃m
p−1 and Σ̃m

p − Σ̃m
p−1 are less than C = 10−10.

4. The penalty part

In this section, we elaborate on the calculation of the penalty term. We first assume that Σ
is known up to the positive constant σ2: Σ = σ2S with S a known matrix. In that case, Σ̂ in
Equation (5) is replaced by Σ. After that, we discuss the consequences of estimating Σ from
the data by Σ̂.

The calculation of the level probabilities can be done via simulation (Silvapulle and Sen 2005,
pp. 78–81). Herein, we use the property that all closed convex cones (r1 = r2 = 0) and
relocated ones (r = [r′1, r

′
2]
′ #= 0) can be written in the form Hm : R1β

∗ = 0, R2β
∗ ≥ 0, with
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β∗ = β when r1 = r2 = 0 and β∗ = β − q and [R′
1, R

′
2]
′q = r when r #= 0 (Kuiper et al. 2012).

Note that q only exist when [R′
1, R

′
2]
′ is of full rank (after discarding redundant restrictions).

The simulation consists of 5 steps:

1. Generate z (of length tk) from Ntk(β
0 = 0,W ), with W = σ2S ⊗ [X ′X]−1, where S is

a known matrix. Silvapulle and Sen (2005, pp. 86) and Robertson et al. (1988, p. 69)
prove that the calculation of the level probabilities does not depend on the mean value
β0 for closed convex cones. Furthermore, Robertson et al. (1988, p. 69) demonstrate
for closed convex cones that the calculation of the level probabilities are invariant for
positive constants like σ2 and N . However, there is one exception, which is discussed
below.

2. Compute z̃m via z̃m = arg minβ∗∈{β∗∈Rtk:R1β∗=0,R2β∗≥0}(z−β∗)′W−1(z−β∗), such that
the parameters are in accordance with R1β

∗ = 0, R2β
∗ ≥ 0, the hypothesis of interest.

To implement this in software, one requires a quadratic programming algorithm, where
one minimizes 1/2z̃′mHz̃m+c′z̃m with respect to z̃m, withH = 2W−1 and c′ = −2z′W−1.
For example, one can use the IMSL subroutine QPROG (Visual Numerics 2003, pp.
1307–1310) in Fortran 90. Since H = 2W−1 is positive definite, the objective is a convex
function and the problem has a feasible solution which is a unique global minimizer.

3. Determine the number of levels in z̃m and denote this by Lm. Let restriction a be denoted
by R2aβ

∗ ≥ 0 for a = 1, . . . , cm1, A = {a : R2az̃m = 0}, that is, the set of restriction
indices for which the restriction is binding, and φ = {β : R1β

∗ = 0, R1aβ
∗ = 0 ∀ a ∈ A}.

Then, Lm is the dimension of φ.

4. Repeat the previous steps T (e.g., T = 100, 000) times. To examine the stability of the
penalty term, one could calculate it a second time with another seed value. If the two
penalties are dissimilar, one should increase the value of T .

5. Estimate the level probability wl(tk,W,Hm) by the proportion of times Lm is equal to
l (l = 1, . . . , tk) in the T simulations.

As discussed in the first simulation step, the level probabilities are invariant for the mean
value β0 and the variance term σ2. This holds almost always true for closed convex cones
Hm : R1β = 0, R2β ≥ 0 and relocated ones Hm : R1β = r1, R2β ≥ r2 where [r′1, r

′
2]
′ #= 0

and [R′
1, R

′
2]
′ is of full rank after discarding redundant restrictions. There is one exception,

namely restrictions of the type βl ≥ r21 (including r21 = 0) for l = 1, . . . , tk. When the
hypothesis of interest contains this type of restriction, one must use β0 = 0. This results in
level probabilities that are invariant for the value of σ2.

Notably, the level probabilities for Hm : βl ≥ r21 are the same as for Hm : βl ≥ 0, that is,
here is no difference in complexity for these two hypothesis. When sampling z from N1(0,W )
with W a scalar, half of the time Hm : z ≥ 0 is valid and z̃m has one level; the other time
Hm : z ≥ 0 will be invalid and z̃m has zero levels. As a consequent, the expected dimension
of βl for Hm : βl ≥ r21 is a half.

The penalty term

PTm = 1 +
tk∑

l=1

wl(tk,W,Hm) l



8 A Fortran 90 Program for the Generalized Order-Restricted Information Criterion

can be seen as the expected dimension of the parameters. That is, the expected dimension of
β values plus 1 because of the unknown variance term σ2 in Σ = σ2S with S a known matrix.

Until now, we have assumed in the calculation of the level probabilities that Σ is known up
to the constant σ2. Often Σ is unknown, in that case one should estimate it to determine the
level probabilities. However, when t = 1, no estimation of Σ = σ2 is required, since the level
probabilities are invariant of positive constants like σ2 (see Step 1). In contrast, Σ needs to
be estimated for t > 1. One can estimate Σ by Σ̂, see Equation (6); as is done in the software.

If Σ is estimated from the data, the dimension of Σ, which is the number of unknown distinct
elements of Σ, is (t+1)t/2 instead of 1. Since the restrictions are always on the β parameters
and never on the elements of Σ, the number of unknown distinct elements is equal for all
hypotheses of interest (Hm). So, although the penalty should then (perhaps) be corrected,
the correction is equal for all Hm for m ∈ M.

In the next section, we will demonstrate evaluating hypotheses with the GORIC for different
types of models.

5. The GORIC illustrated

5.1. Analysis of variance (ANOVA)

In this section, we will illustrate the GORIC supported by real data for which the descriptive
statistics are available in Lievens and Sanchez (2007). They investigated the effect of training
on the quality of ratings made by consultants. One variable of interest is the signal detection
accuracy index, which “refers to the extent to which individuals were accurate in discerning
essential from nonessential competencies for a given job” and is measured by “standardized
proportion of hits - standardized proportion of false alarms” (Lievens and Sanchez 2007, p.
817). Three groups of consultants are distinguished: 1) expert, 2) training, and 3) control.
There are 21 raters in the expert group, 25 in the training group, and 26 in the control
group. Hence, the ANOVA model can be written as Equation (1) with t = 1, k = 3, and
N =

∑k
j=1 nj = 21+ 25+ 26 = 72, where x1, x2, and x3 denote group membership variables.

Since t = 1, we will drop the first subscript in the index for ease of notation and use βj instead
of β1,j . Note that for t = 1 no iteration is required between B̃m and Σ̃m (see Section 3), and
that Σ does not need to be estimated to calculate the level probabilities (see Section 4).

The authors expected that accuracy of competency ratings would be higher among experts
and trained raters than among raters in the control group (i.e., β1 ≥ β3 and β2 ≥ β3) and
furthermore, that it would be highest among raters who already had competency modeling
experience (i.e., β1 ≥ β2). These expectations can be represented by the hypothesis H1 : β1 ≥
β2 ≥ β3. Another theory could be that the accuracy of the training group is at least twice as
high as the one in the control group and that of the export group is higher than that of the
training group. This leads to H2 : β1 ≥ β2 ≥ 2 β3. Since both can be bad/weak hypotheses,
it is informative to evaluate the unconstrained hypothesis (Hu) as well, in which there are
no restrictions on the parameters. Namely, its inclusion ensures that no weak hypothesis is
selected, since Hu will be preferred if the other two hypotheses are weak / do not fit the data.
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The set of hypotheses, therefore, consists of

H1 : β1 ≥ β2 ≥ β3,

H2 : β1 ≥ β2 ≥ 2 β3,

Hu : β1, β2, β3.

Table 1 displays the order-restricted means β̃m
j (Equation (7)), the log likelihood values log

f(Y |X, B̃m, Σ̃m), the penalty terms PTm, and the GORIC values (Equation (4)), for the three
hypotheses of interest. Since the sample means are in accordance with the restrictions in all
the three hypotheses, the order-restricted means of these hypotheses are equal to the sample
means. Therefore, the three hypotheses have the same log likelihood and the distinction
between the three is based on the penalty, that is, the complexity of the hypotheses. Since
H1 is less complex than H2 and Hu (i.e, PT1 < PT2 and PT1 < PTu), H1 is the preferred
hypothesis. As a result, the first theory is preferred over the second and it is not a weak
theory.

m β̃m
1 β̃m

2 β̃m
3 log f(Y |X, B̃m, Σ̃m) PTm GORICm

1 0.79 0.64 0.29 -24.85 2.84 55.38
2 0.79 0.64 0.29 -24.85 2.90 55.50
u 0.79 0.64 0.29 -24.85 4.00 57.70

Note. Bolding indicates the lowest value.

Table 1: GORIC of the three specified hypotheses in the ANOVA example.

5.2. Multivariate analysis of variance (MANOVA)

In this section, we will illustrate the GORIC supported by real data which are available on
page 10 of Silvapulle and Sen (2005) and in a report prepared by Litton Bionetics Inc in 1984.
These data were used in an experiment to find out whether vinylidene fluoride gives rise to
liver damage. Since increased levels of serum enzyme are inherent in liver damage, the focus
is on whether enzyme levels are affected by vinylidene fluoride.

Hence, the variable of interest is the serum enzyme level. Three types of enzymes are in-
spected, namely SDH, SGOT, and SGPT. To study whether vinylidene fluoride has an influ-
ence on the three serum enzymes, four dosages of this substance are examined. In each of
these four treatment groups, ten male Fischer-344 rats received the substance. The ANOVA
model can be written as Equation (1) with t = 3, k = 4, and N = 10. Hence, (y1i, y2i, y3i)

′

denotes the observations on the three enzymes for rat i, x1 to x4 are the group membership
variables, and βh,j denote the mean response for dose j and dependent variable h.

If vinylidene fluoride induces liver damage, we expect that each serum level increases with
the dosage of the substance, see H1 below. Another theory could be that there is no effect of
dosage, see H0 below. Since both can be bad/weak hypotheses, it is informative to evaluate
the unconstrained hypothesis (Hu) in which there are no restrictions on the parameters. The
set of hypotheses, therefore, comprises

H0 : βh,1 = βh,2 = βh,3 = βh,4 for all h = 1, 2, 3,

H1 : βh,1 ≥ βh,2 ≥ βh,3 ≥ βh,4 for all h = 1, 2, 3,

Hu : βh,1, βh,2, βh,3, βh,4 for all h = 1, 2, 3.
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Note that there are twelve parameters in total.

Since the covariance matrix Σ is unknown, it is estimated from the data by the maximum
likelihood estimator of Σ:

Σ̂ =




10.79750 −0.85750 −0.07000
−0.85750 226.75750 21.00500
−0.07000 21.00500 24.67500



 .

The formula of Σ̂ is displayed in Equation (6). This estimate, Σ̂, is used in determining the
level probabilities (see Section 4).

Table 2 displays the order-restricted means β̃m
h,j in Equation (7). Furthermore, Table 3

presents the log likelihood values (log f(Y |X, B̃m, Σ̃m)), the penalty terms (PTm), and the
GORIC values in Equation (4), for the three hypotheses of interest. The penalty values for
both H0 and H1 are low(er), whereas the fit of Hu is high(er). The support in the data for
Hu is that much higher that it renders the lowest GORIC value. Therefore, it is concluded
that Hu is the preferred hypothesis. Notably, although H1 is preferred over H0, H1 is a weak
theory, since it is not preferred over the unconstrained hypothesis Hu.

SDH SGOT SGPT

m β̃m
1,1 β̃m

1,2 β̃m
1,3 β̃m

1,4 β̃m
2,1 β̃m

2,2 β̃m
2,3 β̃m

2,4 β̃m
3,1 β̃m

3,2 β̃m
3,3 β̃m

3,4

0 24.13 24.13 24.13 24.13 105.38 105.38 105.38 105.38 59.70 59.70 59.70 59.70
1 24.13 24.13 24.13 24.13 105.37 105.37 105.37 105.37 63.00 63.00 60.64 52.16
u 22.70 22.80 23.70 27.30 99.30 108.40 100.90 112.90 61.90 63.80 60.20 52.90

Table 2: The order-restricted means (β̃m
h,j) for dependent variable h, predictor j, and Hypoth-

esis Hm in the MANOVA example.

m log f(Y |X, B̃m, Σ̃m) PTm GORICm

0 -406.54 4.00 821.09
1 -396.85 7.48 808.66
u -388.80 13.00 803.61

Note. Bolding indicates the lowest value.

Table 3: The GORIC values of the three specified hypotheses in the MANOVA example.

6. Generalized Order-Restricted Information Criterion Weights

As can be seen from the two examples, the relevant information is not contained in the GORIC
value but in their differences. To improve the interpretation, we introduce GORIC weights
(wm), comparable to the Akaike weights (Burnham and Anderson 2002, p. 75-79, 302-305,
438-439), with

wm =
exp{−1/2(GORICm −GORICmin)}∑

m′∈M exp{−1/2(GORICm′ −GORICmin)}
, (9)

where M denotes the set of hypothesis indices and GORICmin the lowest GORIC value, that
is, the GORIC value of the preferred model. The GORIC weights are numbers on a scale
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from 0 to 1 that sum to 1 over the set of hypotheses under investigation. These numbers can
be interpreted as the relative weight of evidence in the data of each hypothesis.

For the two examples, the GORIC weights are given in Table 4. From these weights, one
can also determine the relative evidence for Hypothesis m compared to m′. For instance,
in the example of Lievens and Sanchez (2007), H1 is 0.44/0.14 ≈ 3.18 more likely than Hu.
Therefore, it is not a weak hypothesis. On the other hand, H1 andH2 receive (about) the same
amount of support (and are not weak), namely 0.44/0.42 ≈ 1.06. Therefore, both H1 and H2

are preferred in this set. Thus, although H1 is the preferred hypothesis in the set (and not
weakly supported by the data), there is no compelling evidence, since H2 receives more or less
the same support. Bear in mind that H2 : β1 ≥ β2 ≥ 2 β3 is contained in H1 : β1 ≥ β2 ≥ β3
and that they strongly resemble each other. In contrast, there is eminent support for one
hypothesis in the example of Silvapulle and Sen (2005). Namely, Hu is preferred and it has
0.93/0.07 ≈ 12.52 times more support than H1.

Table 4: GORIC Weights of the Two Examples
Example m GORICm wm

Lievens and Sanchez (2007, see Section 5.1) 1 55.38 0.44
n1 = 21, n2 = 25, n3 = 26 2 55.50 0.42

u 57.70 0.14

Silvapulle and Sen (2005, see Section 5.2) 0 821.09 0.00
n1 = n2 = n3 = n4 = 10 1 808.66 0.07

u 803.61 0.93

Note. GORIC = generalized order-restricted information criterion and
wm is the GORIC weight for Hypothesis m.

It should be stressed that, in the first example, the differences in GORIC values for H1,
H2, and Hu equal the differences in penalty term values, since the data are in accordance
with all three hypotheses (rendering the same likelihood). Hence, increasing the number
of observations does not affect the relative evidence (assuming that the data are still in
agreement with the hypotheses). One should perhaps take into account the maximum value
of the relative evidence for two hypotheses, when the data are in accordance with these two
or when their likelihood values are the same, that is, when the hypotheses resemble each
other. Therefore, more research might be required regarding the performance of the GORIC
weights. Nevertheless, when evaluating hypotheses that are not subsets, this problem will
(most probably) not arise. Based on Burnham and Anderson (2002, p. 75-79, 302-305, 438-
439), we conclude that the GORIC weights in Equation (9) represent the weight of evidence
for the corresponding hypothesis (Hm) to be the best of the set for the data at hand.
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A. GORIC.exe user manual

This user manual will describe and illustrate the options available in GORIC.exe (published
along with this article and also available at http://staff.fss.uu.nl/RMKuiper). It also
includes a directory with the input and output files of the ANOVA and MANOVA example
given in this article. This program is made in Fortran 90 using the Intel Visual Fortran
Compiler 10.0 for Windows. This compiler uses IMSL 5.0.

GORIC.exe is free, however, when results obtained with this program are published, please
refer to this article, Kuiper et al. (2011), and Kuiper et al. (2012).

A.1. GORIC.exe

In the software, we use a N ×k matrix X, like in Equation (3), where the xji variables can be
continuous predictors and grouping/dummy variables. Note that a variable of group mem-
bership is obtained by filling in ones and zeros at the appropriate places in a predictor/vector.
Furthermore, the order of the predictors is not of importance, that is, the group membership
variables do not need to come first. In addition, when there are no group variables, one should
include an intercept by adding a vector ones in X. Like explained in Section 2.2, the param-
eters are taken together, leading to a vector of tk parameters β with indices 1 to tk. Notably,
when k = 0, they will be denoted by θ, a vector of t variable / group means. The order of the
parameters corresponds to the order of the k predictors and the order of the t dependent vari-
ables. Namely, the first k parameters belong to the first dependent variable, · · · , and the last
k parameters belong to the last one. Stated differently, (β1, . . . ,βk, . . . ,β(t−1)k+1, . . . ,βtk)
corresponds to β = (β1,1, . . . ,β1,k, . . . ,βt,1, . . . ,βt,k). Bear in mind that β1,βk+1, . . ., and
β(t−1)k+1 reflect the intercepts when the first column of X consists of ones.

As discussed in Step 4 in Section 3, we stop iterating when the absolute values of the elements
of B̃m

p − B̃m
p−1 and Σ̃m

p − Σ̃m
p−1 are less than C = 10−10. But, to increase computing time,

C is lowered to C = 10−9 after 50, 000 iterations and to C = 10−8 after 100, 000 iterations.
When still no convergence is achieved after 200, 000 iterations, the program uses the current
estimates B̃m

P and Σ̃m
P and displays these estimates together with B̃m

P−1 and Σ̃m
P−1 in the dos

box and the output file. The consequence of lowering C is that the procedure might not
result in good approximations of B̃m and Σ̃m. However, slow convergence only occurs when
the hypothesis of interest does not fit the data.

A.2. Modification input files

No matter what analysis should be performed, two text files have to be modified (such that
they apply to your data), namely Input.txt and Data.txt.

It should be noted that:

The names of the text files are fixed and cannot be changed.
These files have to be ANSI or ASCII files. When you open or write your input and/or
data in Notepad (++), you should save it as a ANSI file (not a unicode or utf-8 file).
In Word, you should save it as a .txt (ASCII) file.

The format of these files should not be changed, that is, do not add empty lines and do
not delete lines containing labels.
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The data in Data.txt should be complete, that is, missing data are not allowed. Fur-
thermore, a ’dot (”.”) is used as decimal separator, not a comma (”,”).

Data.txt

The file Data.txt looks as follows (in the MANOVA example):

18 101 65 1 0 0 0

...

27 88 56 1 0 0 0

25 113 65 0 1 0 0

...

27 98 65 0 1 0 0

22 88 54 0 0 1 0

...

21 107 61 0 0 1 0

31 104 57 0 0 0 1

...

29 99 48 0 0 0 1

In the data file, a N × (t + k) matrix must be given. The t dependent variables must be
given first, followed by the k predictors. In this example, the predictors only consist of group
membership variables, denoted by d in Equation (1). In case there are no group membership
variables, a vector of ones should be included, which represents the intercept. This can be
done by specifying it in the input (see below) or by adding a column of ones to your data file.

It should be stressed that a dot (“.”) should be used as decimal separator. When a comma
(“,”) is used, only the number proceeding it is read (e.g., “1,9” is read as “1”). Furthermore,
text or extra hard returns/enters should not be added to Data.txt.

Input.txt

The file Input.txt looks as follows (in the MANOVA example):

t k intercept N Stand x Stand y

3 4 0 40 0 0

Seed T

123 100000

M

3

Number of Equality (c_e) and Order (c_o) Restrictions for Each Model

(resulting in M lines with 2 numbers)

9 0

0 9

0 0
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R for Model 1

1 -1 0 0 0 0 0 0 0 0 0 0

...

0 0 0 0 0 0 0 0 0 0 1 -1

R for Model 2

1 -1 0 0 0 0 0 0 0 0 0 0

...

0 0 0 0 0 0 0 0 0 0 1 -1

R for Model 3

r for Model 1

0

...

0

r for Model 2

0

...

0

r for Model 3

t, k, and N: t is the number of dependent variable, k the number of predictors, and N the
number of observations, see Section 2.1; for k see also the item below.

intercept: This should be a 1 if you want the software to incorporate the intercept and a 0
when you do not.
When you want the software to include a vector of ones to the set of predictors, the
software will change k into k + 1. Consequently, the restrictions should be given for
t(k+1) parameters as opposed to tk. Note that the first parameter (for every dependent
variable) will represent the intercept.
When your data (represented by the N × k matrix X) includes a vector of ones, the
number of predictors (k) should include the intercept (see Section 2.1). In that case,
“intercept” should be set to 0, otherwise the program will fail to continue.

Stand x and Stand y: If you set “Stand x” to 1, the predictors (X) will be standardized.
The analogue hods true for “Stand y”.
The parameters regarding the same dependent variable are only comparable when the
x variables are standardized (see Section 2.2). Additionally, the parameters belonging
to different dependent variables can solely be examined if both the dependent variables
and the corresponding x variables (if any) are standardized.

Seed and T: The seed value is represented by “Seed” and the number of iterations required
for computing the penalty part of the GORIC by T . These are discussed in Simulation
step 4 in Section 4.

M, c e, and c o: M denotes the number of models/hypotheses, and c e = c1 and c o = c2
the number of equality and order restrictions, respectively, see Section 2.2.
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R and r: R is the restriction matrix and equals [R′
2, R

′
1]
′ and r the right hand side and equals

[r′2, r
′
1]
′ (see Sections 2.2).

The models are of the form Hm : R1β = r1, R2β ≥ r2. It should be stressed that the
order of the restrictions are of importance: the c1 equality restrictions must be given
first and the c2 order restrictions second.
One must give a restriction matrix (R = [R′

1, R
′
2]
′) and a right hand side (r = [r′1, r

′
2]
′)

for each model. Hence, you need to fill in M restriction matrices with each a heading
and then M right hand side vectors with each a heading. Note that there is only a
heading when there are no restrictions, that is, in case of the unconstrained model.
Bear in mind that the ordering of the columns in the restriction matrix depend on the
ordering of the parameters. In the software, the first k parameters belong to the first
dependent variable (h = 1), · · · , and the last k to the last dependent variable (h = t).
Hence, in the example, β1 corresponds to β1,1, β2 to β1,2, · · · , β5 to β2,1, · · · , and β12
to β3,4.

As in Data.txt, text or extra hard returns/enters should not be added to Input.txt, except
for headings for additional models.

A.3. Error messages

In the program GORIC.exe, error messages are incorporated to detect wrongly stated input.
However, it is possible to make a mistake that we have not foreseen. In that case, check the
input and compare it to the data. If you cannot solve the problem, send the input and data
file to r.m.kuiper@uu.nl.

The requirement that R = [R′
1, R

′
2]
′ should be of full rank when r = [r′1, r

′
2]
′ #= 0 (see Kuiper

et al. (2012) and Section 4) is investigated in the software. However, note that R is not
examined on redundant restrictions. Therefore, the software does not detect hypotheses that
are no relocated closed convex cones. A warning appears when R is not of full rank when
r #= 0 and the user is asked to investigate whether the additional restrictions are redundant.
By pressing the enter button, the program proceeds. It should be stressed that the program
stops without a warning in case of conflicting restrictions (e.g., Hm : βl ≤ −r21,βl ≥ r21 for
r21 > 0). Moreover, the GORIC is calculated in presence of non-redundant restrictions, like
range restrictions (e.g., Hm : βl ≥ −r21,βl ≤ r21 for r21 > 0), which is not a (relocated) closed
convex cone. In that case, the GORIC should be interpret with care for two reasons. First,
the GORIC is not (yet) defined for these types of restrictions. Second, the level probabilities
are now no longer invariant for β0 and σ2. In the software, we use β0 = 0. As a consequence,
Hm : βl = 0 is examined in determining the penalty.

A.4. Save and close

When you have modified Input.txt and Data.txt (such that it applies to your data), you
should save and close it.

A.5. Run GORIC.exe

When GORIC.exe is completed, the output file Output.txt will be created in the folder you
are working in.
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Output.txt

The output is given in Output.txt and will look as follows (in case of the MANOVA example):

This program is free. However, when results obtained with this program are

published, please refer to:

Rebecca M. Kuiper, Herbert Hoijtink, and Mervyn J. Silvapulle (2011).

An Akaike-type Information Criterion for Model Selection under Inequality

Constraints. Biometrika, 98 (2), 495-501.

Rebecca M. Kuiper, Herbert Hoijtink, and Mervyn J. Silvapulle (2012).

Generalization of the Order-Restricted Information Criterion for Multivariate

Normal Linear Models.

Journal of Statistical Planning and Inference, 142, 2454-2463

Rebecca M. Kuiper and Herbert Hoijtink (2012).

A Fortran 90 Program for the Generalization of the Order-Restricted

Information Criterion.

Journal of Statistical Software.

Notably, the latter is included in this software.

- Summary of observed data -

- Number of observations (N) -

N = 40

- Sigma estimated from the data -

h, estimated Sigma

1 10.79750 -0.85750 -0.07000

2 -0.85750 226.75750 21.00500

3 -0.07000 21.00500 24.67500

- Order-restricted betas -

Note that the first 4 parameters belong to the first dependent variable, ...,

and the last 4 to the last dependent variable.

Group number: 1 2 3 4 5 6 7 8 9 10
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11 12

Sample betas: 22.70 22.80 23.70 27.30 99.30 108.40 100.90 112.90 61.90 63.80

60.20 52.90

Hypothesis 1 24.13 24.13 24.13 24.13 105.38 105.38 105.38 105.38 59.70 59.70

59.70 59.70

Hypothesis 2 24.13 24.13 24.13 24.13 105.37 105.37 105.37 105.37 63.00 63.00

60.64 52.16

Hypothesis 3 22.70 22.80 23.70 27.30 99.30 108.40 100.90 112.90 61.90 63.80

60.20 52.90

- GORIC -

m log likelihood penalty GORIC* GORIC weight** rel.evidence pref.hyp.***

1 -406.54 4.00 821.09 0.00 6254.99

2 -396.85 7.48 808.66 0.07 12.52

3 -388.80 13.00 803.61 0.93 1.00

According to the Generalized Order-Restricted Information Criterion,

out of the set of hypotheses the preferred one is number 3,

which is the unconstrained model, that is, the model without restrictions on

the parameters.

* The value of the Generalized Order-Restricted Information Criterion (GORIC)

= -2 * log likelihood + 2 * penalty.

** The GORIC weight is the relative likelihood / the weight of evidence of

Hypothesis m given the data and the set of hypotheses.

*** The relative evidence for the preferred hypothesis compared to Hypothesis m

reflects how many times the preferred hypothesis is more likely than Hypothesis

m. Thus, it gives insight into the strength of the preferred hypothesis.

Number of observations (N): See Section 2.1.

Sigma estimated from the data: In the software, Σ is estimated by Σ̂ (Equation (6)), the
maximum likelihood estimator of Σ. Bear in mind that Σ is only estimated when t > 1.
For more details see Section 4.

Order-restricted betas: The order-restricted βs can be found in Equation (7), see also
Section A.1. Note that the subscripts are 1 to 12 in the software, where β̃m

1 corresponds
to β̃m

1,1, β̃
m
2 to β̃m

1,2, · · · , β̃m
5 to β̃m

2,1, · · · , and β̃m
12 to β̃m

3,4 in Equation (1).

GORIC: The expression of the GORIC is displayed in Equation (4).
The model/hypothesis with the lowest GORIC value is the preferred one: Hypothesis
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“number 3”, that is, Hu : β1,β2,β3,β4,β5,β6,β7,β8,β9,β10,β11,β12.

GORIC weight: The expression of the GORIC weight is displayed in Equation (9).

relative evidence preferred hypothesis: The relative evidence for the preferred hypoth-
esis compared to Hypothesis m gives an intuition about the strength of the hypothesis.
For more details see Section 6.
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