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Abstract

There are different confirmatory techniques to compare means, like hypothesis testing
and (Bayesian) model selection. However, there is no software package in which these
techniques are available. A Fortran 90 program is written, which enables researchers to
apply these techniques to their data. Besides traditional hypotheses, like H0 : µ1 = µ2 =
µ3 and Hu : µ1, µ2, µ3, order-restricted hypotheses, like µ1 > µ2 > µ3 or µ1 > µ2 = µ3

or µ1 > µ2 < µ3, can be evaluated.

Keywords: (Bayesian) model selection, comparison of means, confirmatory analysis, For-
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1. Introduction

Often researchers have a theory with respect to the ordering of the means in the experiment.
These theories can be written as order-restricted hypotheses (e.g., µ1 > µ2 > µ3) and can be
tested with confirmatory methods. In the context of comparing independent means, that is,
analysis of variance (ANOVA), three approaches are distinguished:

� Silvapulle and Sen (2005, pp. 25–42) present the F̄ test. There are two types of F̄ tests.
Namely the ordered alternative and the ordered null. In the ordered alternative, the
classical null (H0) is tested against an order-restricted hypothesis, for example, H1. In
the ordered null, an order-restricted hypothesis, like H1, is tested against the classical
alternative (Hu).

� Anraku (1999) introduces the order-restricted information criterion (ORIC). The ORIC
can be used to select the best of a set of order-restricted hypotheses, like the hypotheses
in (2).

http://www.jstatsoft.org/
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� Klugkist, Laudy, and Hoijtink (2005) present a Bayesian model selection (BMS) crite-
rion, which can be used in the same context as the ORIC.

For these approaches, user-friendly software is not available. In this paper software is intro-
duced with which the three confirmatory approaches can be executed.

The model used in this paper and in the software is the ANOVA model:

yij = µi + εij , (1)

where i = 1, . . . , k, j = 1, . . . , ni, yij is the jth observation of the dependent variable for
group i, which has ni observations, µi is the mean of group i, and εij is an error term. The
error terms are independently and normally distributed with expected value 0 and variance
σ2, that is, εij ∼ N (0, σ2).

As an example, consider the simple ANOVA with five groups, presented by Lucas (2003). In
Section 3, the theoretical background of his research will be elaborated. Lucas expresses clear
theories with respect to the ordering of means, leading to the following specific hypotheses:

H0 : µ1 = µ2 = µ3 = µ4 = µ5,

H1 : µ5 = µ3 > {µ1, µ4} > µ2, (2)

H2 : µ3 > µ1 > µ4 = µ5 > µ2,

H3 : µ1, µ2, µ3, µ4, µ5.

The hypotheses H0 and H3 are the classical hypotheses, the other two are order-restricted
hypotheses. It is also possible to specify a set of models/hypotheses without the classical null
H0 : µ1 = . . . = µk and/or the classical alternative Hu : µ1, . . . , µk. We recommend to include
Hu (when doing model selection) as a safeguard for choosing a weak hypotheses (Kuiper and
Hoijtink 2010). Furthermore, one should include H0 only when there is real interest in H0.

Although software for exploratory approaches is widely available – e.g., classical hypothesis
testing in SPSS (SPSS Inc. 2006) and model selection using information criteria, like AIC,
in R with the package nlme (Pinheiro, Bates, DebRoy, Sarkar, and R Development Core
Team 2009) – this is not the case for confirmatory approaches, that is, for evaluation of the
four hypotheses in (2). The software presented in this paper can evaluate different types of
hypotheses which can be formulated by Aµ ≥ 0, for some matrix A in which each row is a
permutation of the k-vector (−1, 1, 0, . . . , 0) and µ = (µ1, . . . , µk)

>.

Note that also factorial ANOVA models fit in the framework presented. For instance, a 2×3-
design can be represented by (1) with k = 6. Specific hypotheses about the six group means
can again be formulated by Aµ ≥ 0 (as explained earlier). In a standard two-way ANOVA,
three hypotheses are tested concerning the presence of a main effect of the first factor, a main
effect of the second factor, and the presence of an interaction effect. If one or more of these
effects are found, further evaluation is required to describe the direction of the effects (making
the approach exploratory). In a confirmatory approach, in contrast to a exploratory approach,
expected patterns are specified beforehand. For instance, H : {µ1 = µ2 = µ3}, {µ4 < µ5 <
µ6}, is a prespecified and specific interaction effect. Competing (interaction) effects can also
be specified.

In the next section, subsequently, the F̄ test, the ORIC, and Bayesian model selection will
be shortly explained. In Section 3, a practical example is provided and analyzed using each
of the three approaches. The appendix contains a user manual for the software.
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2. Three confirmatory techniques for comparing means

2.1. Hypothesis testing using the F-bar (F̄ ) statistic

In classical statistical testing the hypothesis all means are equal is tested against the alterna-
tive not all means are equal. This is usually tested with an F test using a one-way ANOVA.
However, often researchers want to test a certain order restriction, because of a theory with
respect to the order of the means in the experiment. See, for example, H1 and H2 in (2).

In Silvapulle and Sen (2005, pp. 25–42) the F test is modified, such that an order-restricted
hypothesis can be tested. This test is called the F-bar (F̄ ) test. It is possible to test the null
hypothesis all means are equal (H0) against an ordered alternative, like H1, and it possible to
test an ordered null (H1) against the alternative all parameters are free (Hu).

The F̄ test statistic is calculated by: F̄ = RSS(Hnull )−RSS(Halt )
S2 , where RSS (H) is the residual

sum of squares under hypothesis H and S2 = (n1 + · · · + nk − k)−1
∑

i

∑
j(yij − ȳi)2 is the

mean square error, with n1 + · · ·+nk − k the error degrees of freedom. This is applied to the
two types of test. For each of the two tests the RSS (Hnull ) and RSS (Halt) will be elaborated
on.

The first test is the ordered alternative, in this test H0 : µ1 = . . . = µk is tested against
an order restriction of the form H1 : Aµ ≥ 0, for some matrix A in which each row is a
permutation of the k-vector (−1, 1, 0, . . . , 0) and µ = (µ1, . . . , µk)

>. In this test,

RSS (Hnull ) =
∑
i

∑
j

(yij − ȳ)2,

where ȳ is the overall mean, and

RSS (Halt) =
∑
i

∑
j

(yij − µ̃i)2,

where
µ̃ = (µ̃1, . . . , µ̃k)

> = argmin
µ∈H1

∑
i

∑
j

(yij − µi)2.

Since
∑

i

∑
j(yij − µi)2 can be rewritten as∑
i

∑
j

(yij − µi)2 =
∑
i

∑
j

(yij − ȳi)2 +
∑
i

ni(ȳi − µi)2 = C(y) + q(µ),

where ȳi is the ith group/treatment mean, y is the matrix consisting of the elements yij , and

q(µ) =
∑
i

ni(ȳi − µi)2 = (ȳ − µ)> diag{n1, . . . , nk} (ȳ − µ),

it holds that

µ̃ = argmin
µ∈H1

q(µ). (3)

This constrained minimization problem, where the objective function q(µ) is quadratic in
µ and the (equality and inequality) constraints are linear in µ, is a quadratic programming
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problem. There are efficient computer algorithms for this minimization problem, here the
IMSL subroutine QPROG (Visual Numerics 2003, pp. 1307–1310) is used in the Fortran 90
program.

The second test is the ordered null in which a null of the form H1 : Aµ ≥ 0 (as explained
earlier) is tested against the alternative no restrictions on the µi ∀i, that is, Hu : µ1, . . . , µk.
Then,

RSS (Hnull ) =
∑
i

∑
j

(yij − µ̃i)2

and
RSS (Halt) =

∑
i

∑
j

(yij − ȳi)2.

As with classical hypothesis testing, p values must be determined. The exact p value, for the
F̄ , can be obtained via simulation. In the ANOVA model, the errors are normally distributed,
that is εj ∼ N (0, σ2). Therefore, the simulation consists of the following three steps (Silvapulle
and Sen 2005, pp. 32–33 and 40):

1. Generate independent observations zij (i = 1, . . . , k and j = 1, . . . , ni) from the standard
normal distribution N (0, 1).

2. Compute F̄ for the generated data.

3. Repeat the previous two steps Rp times. In the program, the default value of Rp is
Rp = 100, 000. Calculate the number of times the F̄ statistic, calculated in Step 2,
exceeds the sample value of the F̄ statistic, this number is denoted by M . The p value
is calculated by M/Rp.

When the p value is smaller than the nominal α-level, often set equal to 0.05, the null hy-
pothesis is rejected. Thus, in the ordered alternative, when p < α, H0 is rejected and in the
ordered null, when p < α, the order-restricted hypothesis is rejected.

2.2. Model selection using order-restricted information criterion

Anraku (1999) proposes the order-restricted information-criterion (ORIC). It can be used to
select the best of a set (M) of models/hypotheses Hm, m ∈ M. The set of hypotheses can
contain H0, Hu, and order-restricted hypotheses of the form Aµ ≥ 0, for some matrix A in
which each row is a permutation of the k-vector (−1, 1, 0, . . . , 0) and µ = (µ1, . . . , µk)

>.

Like other information criteria, the ORIC is based on the log likelihood (logL) and a penalty
term (PT ): ORIC = −2 logL + 2PT . The hypothesis with the smallest ORIC value is the
preferred hypothesis.

The maximum likelihood estimators (mle’s) µ̂m and σ̂2m for Hm, m ∈M are the values of µ
and σ2, respectively, that maximize the log likelihood for Hm:

logL(µ̂m, σ̂
2
m|y) = −N

2
log(2π)− N

2
log(σ̂2m)− 1

2σ̂2m

k∑
i=1

ni∑
j=1

(yij − µ̂mi)2, (4)

where σ̂2m = 1
N

∑
i

∑
j(yij − µ̂mi)2, and N =

∑
i ni. Because of the order restrictions, the

order-restricted mle µ̃m must be found (Anraku 1999). Since the term σ̂2m cancels out the
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term
∑k

i=1

∑ni
j=1(yij − µ̂mi)

2, the maximization of the likelihood actually comes down to

minimizing log(σ2m), subject to µi − µi′ ≥ 0, for i, i′ = 1, . . . , k (Silvapulle and Sen 2005,
pp. 42–43). Which results in the order-restricted mle µ̃m as defined in (3).

The penalty term of Hm (PTm) is equal to:

PTm = 1 +

qm−1∑
l=1

LPml(qm − 1, Vm) l,

where Vm is explained below, LPml(qm − 1, Vm) is a level probability, that is, the probability
that there are l distinct mean values / levels among the qm − 1 means in the order-restricted
mle, and qm − 1 ≤ k the number of distinct µi’s in Hypothesis m. The distinct number of
parameter values equals qm, because of the unknown variance term. For example, in case
k = 5 and the hypothesis is H1 : µ5 = µ3 > {µ1, µ4} > µ2, there are 4 distinct mean
values, namely µ5 and µ3 are a distinct value and µ1, µ4 and µ2 are each a distinct value, and
an unknown variance term. Thus, q1 = 5. Note that the number of observations of the four
distinct mean values are: ñ1 = n3+n5, ñ2 = n1, ñ3 = n4 and ñ4 = n2. The computation of the
level probabilities (corresponding to the restrictions) can be done via simulation (Silvapulle
and Sen 2005, pp. 78–81), consisting of 5 steps (where for convenience the subscript m is left
out):

1. Generate Z (of dimension q−1) from N (0, V ), where q−1 equals the number of distinct
µi values in the hypothesis. It holds that V = diag{1/ñ1, . . . , 1/ñq−1}, where ñl is the
number of observations of group l (l = 1, . . . , q − 1).

2. Compute Z̃ via (3), that is, Z̃ = argminµ∈H(Z − µ)TV −1(Z − µ), where H is the
order-restricted hypothesis.

3. Determine the number of distinct values in Z̃, called levels, denote this by s.

4. Repeat the previous steps RPT times. In the program, the default value of RPT is
RPT = 100, 000.

5. Estimate the level probability LPl(q − 1, V ) by the proportion of times s is equal to l
(l = 1, . . . , q − 1).

The penalty term can thus be seen as the expected number of distinct parameters, that is,
the expected number of distinct mean values plus 1 (because of the unknown variance term).

2.3. Bayesian model selection

Klugkist et al. (2005) present the (Bayesian) encompassing prior approach for order-restricted
hypotheses in ANOVA. The model selection criterion used is the Bayes factor (Kass and
Raftery 1995; Chib 1995), which is the ratio of marginal likelihoods of two hypotheses, say
Hm and Hm′ :

BFmm′ =
L(µ, σ2|y)p(µ, σ2|Hm)/p(µ, σ2|y, Hm)

L(µ, σ2|y)p(µ, σ2|Hm′)/p(µ, σ2|y, Hm′)
, (5)

where p(µ, σ2|Hm) and p(µ, σ2|y, Hm) are the prior and posterior distribution of the model
parameters, respectively, which will be elaborated upon later.
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In the encompassing prior approach, a prior p(µ, σ2|Hu) is specified for the unconstrained
hypothesis Hu : µ1, . . . , µk. The prior distribution of any hypothesis Hm nested in Hu follows
from the encompassing prior, using:

p(µ, σ2|Hm) = p(µ, σ2|Hu)

(
Iµ∈Hm∫

p(µ, σ2|Hu)Iµ∈Hmdµdσ2

)
, (6)

where the indicator function Iµ∈Hm has the value one if the argument is true, that is, if the
parameter values are in accordance with the constraints imposed by Hm, and zero otherwise.

The encompassing prior is specified as follows (Klugkist et al. 2005):

� All model parameters are a priori considered to be independent, that is,

p(µ, σ2) = p(µ1)× . . .× p(µk)× p(σ2).

� The prior distributions for all means are equal, that is,

p(µ1) = . . . = p(µk).

� As will be shown in the sequel, for each parameter a relatively uninformative, conju-
gate prior will be specified, that is, p(µi) ∼ N (µ0; τ

2
0 ) for i = 1, . . . , k, and p(σ2) ∼

Inv-χ2(1;σ20).

In sum, the encompassing prior for the ANOVA model is:

p(µ, σ2|Hu) =

k∏
i=1

N (µ0; τ
2
0 )× Inv-χ2(1;σ20). (7)

Combination of (6) and (7) gives the prior distribution (up to proportionality) of any order-
restricted hypothesis Hm:

p(µ, σ2|Hm) ∝
k∏
i=1

N (µ0; τ
2
0 )Iµ∈Hm × Inv-χ2(1;σ20). (8)

In a similar way as in (6), the posterior of any hypothesis Hm is

p(µ,σ2|y,Hm) = p(µ,σ2|y, Hu)

(
Iµ∈Hm∫

p(µ,σ2|y,Hu)Iµ∈Hmdµdσ2

)
. (9)

The posterior distribution is proportional to the density of the data times the prior distribu-
tion, that is

p(µ,σ2|y,Hm) ∝ L(µ, σ2|y)×
k∏
i=1

N (µ0;τ
2
0 )Iµ∈Hm×Inv-χ2(1;σ20). (10)

The encompassing posterior p(µ, σ2|y, Hu) is (10) where the indicator function always equals
one.
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Klugkist et al. (2005) have shown that (5) when using the prior in (6) and subsequent posterior
in (9) leads to a simple form for the Bayes factor for a nested hypothesis Hm with the
unconstrained hypothesis Hu:

BFmu =
cm
dm

, (11)

where cm and dm are the last terms (between the large brackets) of (6) and (9), respectively.
The inverse of these constants, that is, c−1m and d−1m are the proportions of the encompassing
prior and posterior, respectively, in agreement with the constraints of hypothesis Hm. Esti-
mation of these proportions is straightforward using sampling. This means that in the context
of order-restricted ANOVA, Bayes factors can be obtained without the – often burdensome –
estimation of marginal likelihoods.

Specification of the encompassing prior

To complete the specification of the prior distribution, values must be assigned to the hyper-
parameters µ0, τ

2
0 , and σ20. Klugkist and Hoijtink (2007) showed that Bayes factors for

hypotheses formulated using inequality constraints among parameters are insensitive to the
exact specification, as long as the encompassing prior is relatively vague. However, the results
for hypotheses containing equality constraints are sensitive to the choice of τ20 . Although we
want relatively uninformative priors, that is, a large τ20 , too large values result in Bartlett’s
or Lindley’s paradox (cf. Lindley 1957; Bernardo and Smith 1994). Hence, to get reasonable
values for the hyper-parameters, the prior specification is data-based. A Gibbs sample (Smith
and Roberts 1993) is drawn from the unconstrained posterior p(µ,σ2|y, Hu) = L(µ, σ2|y) ×
p(µ, σ2|Hu), where p(µ, σ2|Hu) ∝ 1. Summaries of the posterior sample provide values for
the hyper-parameters according to the following choices:

� For σ20, the posterior mean of σ2 is used. This provides a value that is reasonable for
the data at hand and, with 1 degree of freedom, a posterior that is hardly affected by
the prior.

� To obtain µ0 and τ20 , the information about each of the µ’s in the posterior sample
is combined as follows: Based on the posterior sample, a credibility interval for each
µi (i = 1, . . . , k) is determined by: µ̄i ± pv · sµi , where µ̄i and sµi are the mean and
standard deviation of the sampled values for µi, respectively, and pv stands for prior
vagueness. With the pv value it is specified which interval is used (e.g., pv = 2 provides
the 95% credibility interval) and allows the user a choice for the amount of vagueness
in the encompassing prior. Subsequently, the smallest lower bound (lb) and the largest
upper bound (ub) of the k intervals define one broad interval containing all reasonable
values for each of the µ’s. From this interval, µ0 = (lb+ ub)/2 and τ0 = (ub− lb)/2 are
specified.

For hypotheses containing equality constraints, the value specified for pv will affect the result-
ing Bayes factors. Larger pv values provide more support for hypotheses containing equality
constraints (i.e., Lindley’s paradox). Specification of the pv value by the user also provides
the option to investigate prior sensitivity by running the program several times with different
values. This is recommended if one or more of the hypotheses contain equality constraints
among the means.
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Estimation of the Bayes factor

The computation of Bayes factors of order-restricted hypotheses versus the unconstrained
hypothesis is straightforward by taking a sample from the unconstrained prior (7) and a
sample from the unconstrained posterior, that is, (10) with Iµ∈Hm = 1 for all µ. Samples are
obtained by application of the Gibbs sampler (Smith and Roberts 1993). The proportions
of prior and posterior iterations in agreement with the order-restricted hypotheses provide
estimates for c−1m and d−1m , respectively. However, for a hypothesis containing at least one
strict equality (e.g., µ1 = µ2), the direct application of this approach would result in the
problematic outcome d−1m = 0 and c−1m = 0. Therefore, the program evaluates ‘about equality’
constraints instead, that is, |µ1 − µ2| < δ for a positive small δ. Two options are provided in
the software: Researchers have the opportunity to investigate ‘relevant differences’ between
means by specifying a non-zero δ, or strict equality constrained hypotheses can be evaluated,
in which case δ approaches zero in a stepwise method. The latter requires an extension of
the basic approach and includes constrained sampling. This will be elaborated in the next
section.

For hypotheses that only require unconstrained sampling, estimation of Bayes factors in the
software is based on a minimum of RBMS iterations from both prior and posterior. The
default value of RBMS is RBMS = 500, 000. The posterior sample is taken after discarding
1,000 iterations that serve as burn-in. Note that, sampling from the unconstrained prior does
not require a burn-in period, since all parameters are a priori independent.

For highly constrained hypotheses, the default value of RBMS = 500, 000 iterations may
be insufficient to get stable estimates of dm and cm. Therefore, some additional rules are
incorporated in the program, when the default setting is chosen: For more than 6 groups,
the number of iterations from prior and posterior are doubled; for more than 10 groups,
the number of iterations from prior and posterior are set at 5 million. Furthermore, another
additional rule is incorporated (whether the default setting is used or not): if a minimum of 100
prior ‘hits’ (iterations in agreement with the constraints) is not reached for each hypothesis in
the set, more iterations are added until this is the case. For an elaboration on the investigation
of the stability and Monte Carlo errors of Bayes factors computed via (11), see Klugkist and
Hoijtink (2007).

Stepwise estimation for small δ

For small values of δ, the estimation as just described would be rather inefficient. Furthermore,
for δ = 0 it would give the result c−1m = d−1m = 0. Therefore, a procedure is applied where the
unconstrained samples are evaluated with a not too small initial δ value, denoted δ0, followed
by a procedure that decreases δ0 in a stepwise way, using δr = δr−1/3, for steps r = 1, . . . , R
(see also Klugkist 2008).

The stepwise procedure is based on the following product rule for the Bayes factor of Hm

with the unconstrained Hu:

BFmu ≈ BFmδ0u
× BFmδ1mδ0

× . . .× BFmδRmδR−1

=
cmδ0u

dmδ0u
×
cmδ1mδ0
dmδ1mδ0

× . . .×
cmδRmδR−1

dmδRmδR−1

. (12)
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Consider the case where Hm includes both inequality and strict equality (δ = 0) constraints.
The notation mδr is used to denote the constraints of Hm, where the desired value δ = 0 is
replaced by a larger value δr (r = 0, . . . , R).

The first Bayes factor in (12), BFmδ0u
=

cmδ0u

dmδ0u
, requires sampling from the unconstrained

prior and posterior and counting the number of iterations in agreement with all constraints in
mδ0 , that is, the order restrictions as well as the equalities evaluated with δ0. The second and
subsequent steps require constrained sampling, that is, sampling from (8) and (10). Consider,

for instance, BFmδ1mδ0
=

cmδ1mδ0
dmδ1mδ0

, where (cmδ1mδ0 )−1 denotes the proportion of iterations,

sampled from the prior of Hm with δ replaced by δ0, that are in agreement with Hm with
δ replaced by δ1 (δ1 < δ0). Similarly, dmδ1mδ0 is based on a sample from the posterior
constrained to the area that complies with the constraints of mδ0 . Constrained sampling is
also done by application of the Gibbs sampler, with inverse probability sampling to obtain
samples in agreement with the constraints (see Gelfand, Smith, and Lee 1992).

In each step, Hm is evaluated with a smaller δr value. The stepwise Bayes factors represent
change in the estimated BFmu, as a consequence of the decrease in δr. At a certain point, a
further decrease of the value for δr no longer changes the Bayes factor, that is, for large enough
R, BFmδRmδR−1

→ 1 (Berger and Delempady 1987). This implies that a good approximation
of BFmu with exact equalities is obtained.

To obtain an efficient estimation procedure, it is important to start with a large enough δ0.
In the software, the starting value is prior-based and equals τ0/2 (τ0 for more than 8 groups)
unless this value is smaller than the user-specified δ in which case δ is evaluated directly.
Sampling from the unconstrained prior and posterior (first step) is as explained in the previous
section. In each subsequent step (r = 1, . . . , R), samples are drawn from the constrained
priors and posteriors after a burn-in of 100 iterations. The number of iterations from each
constrained prior is minimally 500,000. If necessary, up to 1 million iterations are done until
the number of hits reaches 500. If after 1 million iterations the number of hits is below 100,
more samples are drawn until 100 hits are obtained. From each constrained posterior, samples
are drawn until 500 hits are obtained, with a maximum of 1 million iterations.

The number of steps, R, is determined by one of two stopping rules: convergence of the
estimate of the final Bayes factor is assumed if two subsequent BFmδrmδr−1

values deviate
less than 0.05 from 1. When δ 6= 0, the last step of the procedure is performed as soon as
δr ≤ δ (if δr < δ, in the final step it is set at δ).

Interpretation of the results

The software estimates Bayes factors for each order-restricted hypothesis with the uncon-
strained hypothesis using (11) or (12). The Bayes factor for the comparison of two order-
restricted hypotheses, say Hm and Hm′ can be computed, using:

BFmm′ =
BFmu

BFm′u
.

A Bayes factor provides the amount of support of one hypothesis compared to another. If,
for instance BFmm′ = 6, the support for Hm is 6 times as large as for Hm′ . Likewise,
BFmm′ = 0.5 shows that the support for Hm is 2 times as small as the support for Hm′ .

Furthermore, the software provides posterior model probabilities (pmp), representing the
relative support for each hypothesis in a finite set of hypotheses (M). To obtain pmp’s from
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Bayes factors, prior model probabilities must be specified, representing the degree of belief
in each hypothesis before observing the data. A usual – objective – choice are equal prior
probabilities for all hypotheses, that is, p(Hm) = 1/M , for m ∈ M, where M denotes the
total number of hypotheses. This prior specification, which is also adopted in the software,
leads to the following equation for pmp(Hm):

pmp(Hm) =
BFmu∑

m∈M BFmu
.

Posterior model probabilities can be computed including or excluding the unconstrained hy-
pothesis. As an example, consider H0, H1 and H2 from (2). In the software, the user can
specify the presence of just these 3 hypotheses (i.e., M = 3) and the pmp’s are computed
excluding the unconstrained hypothesis:

pmp(Hm) = BFmu/ (BF 0u + BF 1u + BF 2u) .

Alternatively, one can also explicitly add the unconstrained hypothesis as a hypothesis of
interest (M = 4). The resulting pmp values, denoting the unconstrained hypothesis by H3,
are:

pmp(Hm) = BFmu/ (BF 0u + BF 1u + BF 2u + BF 3u) ,

for m ∈M and with BF 3u = 1.

3. Example based on Lucas (2003)

The three approaches for confirmatory ANOVA will be illustrated using data from the research
of Lucas (2003). In this study, the interest lies in the amount of influence a leader has on
his/her group members. The experiment contained five experimental groups: (1) a group
with a randomly selected male leader, (2) a group with a randomly selected female leader,
(3) a group with a male leader selected on ability, (4) a group with a female leader selected
on ability, and (5) a group with a female leader selected on ability after institutionalization
of female leadership. The institutionalization is done by showing the participants a film in
which it is normal to have female leadership and females do well as leaders. The resulting
group means and standard deviations of the influence of the leader are shown in Table 1.

The research question of Lucas (2003) is: “Can institutionalization of female leadership reduce
the influence gap between woman and men by legitimating structures of female leadership?”
The expectations of Lucas (2003) are in short:

Group Mean influence SD n

1 2.33 1.86 30
2 1.33 1.15 30
3 3.20 1.79 30
4 2.23 1.45 30
5 3.23 1.50 30

Table 1: Group means and standard deviations (SD) of influence (Lucas 2003).
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� Male leaders (group 1 and 3) have higher influence over participants than female leaders
(group 2 and 4, respectively), ceteris paribus.

� Leaders appointed on ability (group 3 and 4) have higher influence over participants
than leaders appointed randomly (group 1 and 2, respectively), ceteris paribus.

� Institutionalized female leaders selected on ability (group 5) have higher influence over
participants than ‘normal’ female leaders selected on ability (group 4), or than randomly
selected female leaders (group 1).

� Institutionalized female leaders selected on ability (group 5) have (almost) the same
influence over participants as male leaders appointed on ability (group 3).

These expectations can be represented by the hypothesis H1 : µ5 = µ3 > {µ1, µ4} > µ2,
where µi represents the mean influence of the leader in group i.

Another hypothesis of interest can be:

� Leaders chosen on basis of ability score higher than leaders selected at random (so,
group 3 scores higher than group 1 and group 4 scores higher than group 2).

� Male leaders selected at random (group 1) have an higher influence than female leaders
selected on competence (group 4).

� There is no difference in influence of female leaders selected on competence in case of
institutionalization (group 5) or in the ‘normal’ case (group 4).

This can be represented by H2 : µ3 > µ1 > µ4 = µ5 > µ2.

In addition, the traditional null and alternative hypothesis, H0 and H3 from (2), respectively,
will be used to illustrate the F̄ test, the order-restricted information criterion and Bayesian
model selection.

3.1. Results using the F̄ test

Using the F̄ test for the evaluation of the four hypotheses specified in the Lucas’ example
(see (2)), five tests are performed (Table 2). First, H0 is tested against H3. This test results
in a p value smaller than 0.001, rejecting H0. Second, two tests are done with respect to
H1: H0 is tested against the order-restricted H1 and H1 is tested against the unconstrained
hypothesis H3. These tests result in a p value smaller than 0.001 and a p value of 0.995,

Hypotheses tested F̄ p value

H0 against H3 30.27 < 0.001

H0 against H1 30.26 < 0.001
H1 against H3 0.01 0.995

H0 against H2 22.91 < 0.001
H2 against H3 7.36 0.070

Table 2: The F̄ tests of the four specified hypotheses.
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Hypothesis logLm Penalty ORIC

H0 : µ1 = µ2 = µ3 = µ4 = µ5 −292.27 2.00 588.54
H1 : µ5 = µ3 > {µ1, µ4} > µ2 −278.05 3.19 562.49
H2 : µ3 > µ1 > µ4 = µ5 > µ2 −281.76 3.14 569.79
H3 : µ1, µ2, µ3, µ4, µ5 −278.05 6.00 568.10

Table 3: The ORIC values of the four specified hypotheses.

respectively, both favoring H1. Third, two tests are done with respect to H2: H0 is tested
against H2 and H2 is tested against H3. The resulting p values are a p value smaller than
0.001 and a p value of 0.07, respectively, both favoring H2. So, both H1 and H2 are preferred,
Since no direct comparison between order-restricted hypotheses is possible with the F̄ test,
nothing can be concluded with respect to an overall preferred hypothesis

3.2. Results using ORIC

The ORIC consists of a fit/likelihood part and a complexity/penalty part. In Table 3 the
likelihood, penalty term, and ORIC values are given for H0, H1, H2 and H3. The penalty for
H0 equals 2, because there are two distinct parameters: all means are equal, which represents
one distinct parameter, and the parameter σ2. Analogously, the penalty for H3 is 6: there
are five distinct means (since there are no restrictions among the means) and one variance
parameter. In hypotheses H1 and H2 there are also five means, but these hypotheses contain
inequality constraints, as opposed to H0 and H3. The penalties of these order-restricted
hypotheses are calculated as explained earlier. The values of the penalties are respectively
3.20 and 3.13. The hypothesis with the smallest value for the ORIC is the preferred hypothesis.
Thus, in the example, H1 is the preferred hypothesis according to the ORIC.

3.3. Results using BMS

The results using BMS are presented in Table 4. For each hypothesis, the Bayes factor
comparing that hypothesis with the unconstrained hypothesis (H3) is presented for three
different values of pv. The equality constraints are evaluated as strict equalities, that is,
δ = 0 is approximated using the stepwise approach explained in Section 2.3.

As was explained in Section 2.3, the encompassing prior is specified to be low informative
and is based on the observed data. The resulting encompassing prior for the Lucas data and

pv = 1 pv = 2 pv = 3

Model BF pmp BF pmp BF pmp

H0 : µ1 = µ2 = µ3 = µ4 = µ5 0.0 0.00 0.0 0.00 0.0 0.00
H1 : µ5 = µ3 > {µ1, µ4} > µ2 57.8 0.96 67.9 0.96 80.6 0.97
H2 : µ3 > µ1 > µ4 = µ5 > µ2 1.4 0.02 1.5 0.02 1.8 0.02
H3 : µ1, µ2, µ3, µ4, µ5 1.0 0.02 1.0 0.01 1.0 0.01

Table 4: Bayes factors (BF ) and posterior model probabilities (pmp) for different prior
specifications.
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pv = 1 is:

p(µ1, µ2, µ3, µ4, µ5, σ
2|H3) =

5∏
i=1

N (2.28; 1.53)× Inv-χ2(1; 2.50).

The priors using pv = 2 and pv = 3 differ only with respect to the variance of the normal
distributions, with values 2.32 and 3.27, respectively.

Irrespective of the choice made for the prior, H1 is clearly the most supported order-restricted
hypothesis. The corresponding posterior probabilities (using equal prior model probabilities)
for the four hypotheses are 0.00, 0.97, 0.02 and 0.01, respectively (for each pv value). These
results again lead to the conclusion that H1 is the best of the four models/hypotheses consid-
ered, as was also concluded when using the ORIC. Comparison of the three prior specifications
shows that, for the hypotheses at hand, the results are not very sensitive to the specification
of the prior.
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A. ConfirmatoryANOVA.exe user manual

This user manual will describe and illustrate the options available in ConfirmatoryANOVA.exe

(published along with this manuscript and also available at http://www.fss.uu.nl/ms/

Kuiper/). This program is made in Fortran 90 using the Intel Visual Fortran Compiler 9.1 for
Windows. This compiler uses IMSL 5.0.

To make the program more user-friendly, an interface is made with use of C# in Microsoft
Visual Studio 2005 (Appendix B). The interface calls the exe file made in Fortran 90 and
it makes the appropriate input file needed for the Fortran 90 program. The input for the
Fortran 90 program is described in this appendix. Those interested in only the interface are
referred to Appendix B.

ConfirmatoryANOVA.exe is free of use. However, when results obtained with this program are
published, please refer to this paper. In the program the following methods can be performed:

� the F̄ test,

� the order-restricted information criterion (ORIC),

� Bayesian model selection (BMS).

A.1. Modification input files

No matter what analysis should be performed two text files have to be modified (such that
they apply to your data), namely Input.txt and Data.txt.

It should be noted that:

� The names of the text files are fixed and cannot be changed. These files have to be text
files (also known as ASCII files).

� The format of these files should not be changed, that is, do not add empty lines and do
not delete lines containing labels.

� The data in Data.txt should be complete, that is, missing data are not allowed.

First half of Input.txt

First of all, you must denote which analyses should be performed. This has to be done in
Input.txt. A certain analysis will be performed if in the line below the name of that analysis
a 1 is filled in. It will not be performed, when a 0 is filled in.

When the ORIC and the F̄ test should be performed and BMS should not, the first half
of Input.txt should look as follows (when using the default values for the seed value and
number of iterations):

Seed value and number of iterations (>0) for Fbar test, ORIC, and BMS

123 100000 100000 500000

Perform F bar test, ORIC, BMS (1 = yes, 0 = no)

1 1 0

http://www.fss.uu.nl/ms/Kuiper/
http://www.fss.uu.nl/ms/Kuiper/
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We will come back to the seed value and number of iterations in Section A.5.

Data.txt

Second of all, group membership and the corresponding data must be given in Data.txt,
where in the first column the group numbers must be given and in the second column the
corresponding data point yij . The order of the group numbers and data points does not
matter as long as the group number corresponds to the data point in the same row. The
following are three examples of how Data.txt could look:

1 3.58 1 3.58 3 1.39

1 -0.15 2 1.67 2 1.85

· · · · · · 3 1.39 5 4.58

2 1.67 4 1.57 5 1.38

2 1.85 5 1.38 3 4.53

· · · · · · 1 -0.15 4 2.97

3 1.39 2 1.85 1 -0.15

3 4.53 3 4.53 2 1.67

· · · · · · 4 2.97 4 1.57

4 1.57 5 4.58 1 3.58

4 2.97 · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
5 1.38 · · · · · · · · · · · ·
5 4.58 · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·

The group numbers do not need to be sequential. For example, if you have a SPSS or Excel
file with data for 10 groups and in the current analysis you want to compare only 5 groups
(which are not the first five). In that case, you can just copy the appropriate data from
the SPSS or Excel file to a text file without adjusting the group numbers. In the software,
the group numbers will be made sequential and the output will be given for these adjusted
sequential group numbers. For example, if you have data with group numbers 1, 4, 5, 6, and
8 (whether the data are in order or not), these will become group numbers 1, 2, 3, 4, and 5,
respectively. Note that, in specifying the restrictions (see the next sections), you need to use
the adjusted sequential group numbers.

From the data the number of groups and the number of observations per group are determined.

A.2. Basic elements of writing constraints

In performing an F̄ test, in determining the ORIC or in doing BMS, all the hypotheses
of interest, like H0 to H3 in (2), must be given explicitly. Note that it is also possible to
specify a set of hypotheses without the classical null H0 : µ1 = . . . = µk and/or alternative
Hu : µ1, . . . , µk. However, we recommend to include the alternative Hu (when doing model
selection), since it can be used to protect against choosing a weak hypothesis (Kuiper and
Hoijtink 2010). Note that one should include H0 only when there is real interest in H0.

When using the ORIC or doing BMS several models/hypotheses are compared to each other.
In the F̄ test, the order-restricted hypotheses (like H1 and H2 in (2)) are tested against H0
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and Hu. If the classical null and/or the alternative are included in the set of hypotheses, the
classical null will be tested against the classical alternative.

The basic elements, for writing down the hypotheses of interest are:

1. Representation of an equality sign (=)

Suppose the hypothesis of interest is µ5 = µ3, that is, µ5 = µ3, µ1, µ2, µ4. The ordering
of the group numbers in this restriction is represented by: 5 3 1 2 4. The restriction
is represented by: 1 1 0 0 0, where the 1s indicate that mean 5 and 3 belong to set
1 and are equal to each other, and where 0 indicates that the corresponding mean is
unrestricted. N.B. in a restriction the first set is always labeled as 1, the second as 2
(and so on).

2. Representation of a greater than sign (>)

Suppose the hypothesis of interest is µ1 > µ3, µ2, µ4, µ5. The ordering of the group
numbers in this restriction is represented by: 1 3 2 4 5. The restriction is represented
by: 1 -3 0 0 0, where -3 means that mean 3 is smaller than mean 1. Thus, it represents
µ3 < µ1, which is equal to µ1 > µ3. Here again 1 indicates that mean 1 belongs to set
1. Because of the inequality restriction between mean 1 and 3, mean 3 belongs to set 2
(the importance of this will be made clear in the next section).

3. Representation of a smaller than sign (<)

Suppose the hypothesis of interest is µ1 < µ2, µ3, µ4, µ5. The ordering of the group
numbers in this restriction is represented by: 1 2 3 4 5. The restriction is represented
by: 1 -1 0 0 0, where -1 means that mean 2 is greater than mean 1. Thus, it represents
µ2 > µ1, which is equal to µ1 < µ2.

Every hypothesis can be represented by these basic elements in one or more restrictions. For
example, µ5 > µ3 < µ1, µ2 < µ4, can be represented by the restrictions:
µ5 > µ3, µ1, µ2, µ4,
µ5, µ3 < µ1, µ2, µ4,
µ2 < µ4, µ5, µ3, µ1,
which can be represented by:

Ordering of means in restriction

5 3 1 2 4

5 3 1 2 4

2 4 5 3 1

(Order) Restrictions

1 -3 0 0 0

0 1 -1 0 0

1 -1 0 0 0

A.3. Combinations of basic elements

Often the hypothesis of interest can be represented in a smaller number of restrictions than
when using only the basic elements. The following shortcuts can be used:
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1. µ5 = µ3 = µ1, µ2 = µ4

Because of the equality constraints (“=”), means 5, 3 and 1 belong to set 1. Therefore,
means 2 and 4 belong to set 2. Thus, this hypothesis can be represented by the following
ordering of the group numbers and corresponding restriction:

Ordering of means in restriction

5 3 1 2 4

(Order) Restrictions

1 1 1 2 2

2. {µ5 = µ3 = µ1} > {µ2 = µ4}
Because of the equality constraints, mean 5, 3 and 1 belong to set 1, and means 2 and
4 belong to set 2. Because of the constraint between mean 1 and 2, mean 2 belongs
implicitly to set 2. This hypothesis can be represented by the following ordering of the
group numbers and corresponding restriction:

Ordering of means in restriction

5 3 1 2 4

(Order) Restrictions

1 1 1 -3 2

The 1s indicate the equality constraints between mean 5, 3 and 1, the −3 represents
the inequality constraint “>” between mean 1 and 2, and the 2 indicates the equality
constraints between mean 2 and 4 (because mean 2 implicitly belongs to set 2). N.B.
the restrictions µ5 = µ1, µ5 > µ2, µ3 > µ2, µ5 > µ4, µ3 > µ4, µ1 > µ4 do not have
to stated explicitly, these will hold since it holds that µ5 = µ3, µ3 = µ1, µ1 > µ2 and
µ2 = µ4.

3. µ5 = µ3 > µ1 > µ2 = µ4

This hypothesis can be represented by the following ordering of the group numbers and
corresponding restriction:

Ordering of means in restriction

5 3 1 2 4

(Order) Restrictions

1 1 -3 -3 3

The 1s indicate the equality constraint between mean 5 and 3. The −3s represents the
inequality constraint “>” between mean 3 and 1 and between 1 and 2. Note that mean
1 implicitly belongs to set 2 and mean 2 implicitly to set 3. Therefore, the equality
constraint between mean 2 and 4 is represented by the 3, because mean 2 and 4 belong
to set 3.

4. µ5 = µ3 > µ1 > µ2 = µ4

Likewise, this hypothesis can be represented by the following ordering of the group
numbers and corresponding restriction:

Ordering of means in restriction

5 3 1 2 4
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(Order) Restrictions

1 1 -3 -1 3

5. µ5 = µ3 > µ1 > µ2, µ4

This hypothesis can be represented by the following ordering of the group numbers and
corresponding restriction:

Ordering of means in restriction

5 3 1 2 4

(Order) Restrictions

1 1 -3 -3 0

Note that, mean 4 is a free parameters, that is, means which are not restricted at all.
The free parameters are denoted by a “0” and no group numbers are assigned (directly
or indirectly). Here, as in the previous two examples, mean 2 belongs to group 3 and
mean 4 belongs to another group. However, this is not group 4. Another example is
given next.

6. µ5 = µ3, µ4, µ1 > µ2

This hypothesis can be represented by the following ordering of the group numbers and
corresponding restriction:

Ordering of means in restriction

5 3 4 1 2

(Order) Restrictions

1 1 0 2 -3

The 1s indicate the equality constraint between mean 5 and 3. Note that, as mentioned
in the previous example, no group number is assigned to free parameters. So, mean 4
belongs to another group than all the other means, but no group number is assigned. A
0 is filled in. Mean 1 belong to the next group, that is, group 2. The −3 represents the
inequality constraint “>” between mean 1 and 2. Note that mean 2 indirectly belongs
to group 3.

7. µ5 = µ3 > µ1 < µ2 = µ4

This hypothesis can be represented by the following ordering of the group numbers and
corresponding restriction:

Ordering of means in restriction

5 3 1 2 4

(Order) Restrictions

1 1 -3 -1 3

8. µ5 = µ3 > µ1 = µ2 > µ4

This hypothesis can be represented by the following ordering of the group numbers and
corresponding restriction:

Ordering of means in restriction

5 3 1 2 4
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(Order) Restrictions

1 1 -3 2 -3

The 1s indicate the equality constraints between mean 5 and 3, the −3s represents the
inequality constraint “>” between mean 3 and 1 and between 2 and 4. Note that mean
1 implicitly belongs to set 2. Therefore, the equality constraint between mean 1 and 2
is represented by the 2.

In the program ConfirmatoryANOVA.exe error messages are built in to detect wrongly
stated hypotheses. But sometimes wrongly stated hypotheses are not detected, because
the stated hypothesis represents another existing hypothesis. When accidently a 3 is
given instead of a 2, another existing hypothesis is stated. Namely, the restriction 1 1

-3 3 -3 represents the hypothesis µ5 = µ3 > µ1, µ2 > µ4. So, care must be taken in
writing down the hypothesis of interest.

9. µ5 = µ3 > µ1, µ2 > µ4

This hypothesis can be represented by the following ordering of the group numbers and
corresponding restriction:

Ordering of means in restriction

5 3 1 2 4

(Order) Restrictions

1 1 -3 3 -3

A.4. Equalities and about equalities in BMS

In the F̄ -test, in the ORIC and in BMS for strict equalities (δ = 0), the two hypotheses
µ1 = µ2 = µ3 (specified by 1 restriction, with ordering of means 1 2 3, and (order) restrictions
1 1 1) and µ1 = µ2, µ2 = µ3 (specified by 2 restrictions, both with ordering of means 1 2 3,
and (order) restrictions 1 1 0 and 0 1 1) are equivalent.

However, the BMS approach in the program also provides the option to specify about equality
constraints (δ > 0). In that case, the second hypothesis is evaluated using |µ1 − µ2| < δ and
|µ2 − µ3| < δ, whereas the first hypothesis adds a third constraint: |µ1 − µ3| < δ. The
results of the first and second hypothesis may differ and therefore careful consideration of the
formulation of hypotheses is important.

A.5. Set the seed value and number of iterations

The calculation of the p value of the F̄ and the penalty of the ORIC (i.e., PT ) and BMS are
sampling based approaches. For example, when generating data from a normal distribution
(in order to determine the p value of the F̄ or the penalty of the ORIC), a seed value is
needed. When using the same seed value, the same data will be ‘sampled’. When looking at
another seed value in a rerun of the same problem, one can also see how stable the results
are. Thus, the p value of the F̄ , the penalty of the ORIC (i.e., PT ), and the results of BMS
can differ for various seed values.

In case a result is not stable, the number of iterations needs be set higher. In the F̄ test,
the p value depends on the number of iterations Rp. When using the ORIC, the penalty is
dependent on the number of iterations RPT . When doing BMS, the Gibbs sampler is used,
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which is based on a minimum of RBMS iterations. These values can also be set in the input,
namely in the second line of Input.txt (see Section A.1.1). The default values of the number
of iterations in each method are: Rp = 100, 000, RPT = 100, 000, and RBMS = 500, 000.

Note that the higher the number of iterations the higher the computing time. If one lowers
the number of iterations (in order to lower the computing time), one must be aware that
this probably affects the stability of the results. Furthermore, when the initial number of
iterations for BMS (i.e., RBMS ) is lowered, the computing time is not necessarily decreased,
because of the requirement of a minimum of 100 prior hits.

A.6. Error messages

In the program ConfirmatoryANOVA.exe error messages are built in to detect wrong stated
hypotheses. However, it does not detect all wrongly stated hypotheses, since the stated
hypothesis can represent another existing hypothesis, as is made clear in Section A.3.

It is also possible to state other input wrongly. For example, the wrong number of restrictions
is given. When making a mistake, an informative warning will be given.

However, it is possible to make a mistake that we have not foreseen. In that case, check the
input and compare it to the data. If you cannot solve the problem, send the input and data
file to r.m.kuiper@uu.nl.

A.7. Modification of the second half of Input.txt

For all three methods (i.e., the F̄ test, the ORIC, and BMS), all hypotheses of interest must be
given explicitly. In case BMS is performed, two additional specifications need to be made: The
desired δ (for exact equalities specify δ = 0, for an about equality any positive number can be
specified) and the prior vagueness pv (default recommendation pv = 2; any positive number
may be specified). This must be done in the second half of Input.txt. If the hypotheses of
interest are the set of hypotheses of Lucas stated in (2), Input.txt has the format shown in
Table 5 (with comments in angle brackets).

A.8. Save and close

When you have modified Input.txt (such that it applies to your data), you should save and
close it.

A.9. Run ConfirmatoryANOVA.exe

When ConfirmatoryANOVA.exe is runned, the output file Output.txt will be created in the
folder you are working in.

Output.txt

Output.txt gives the results of the requested analyses. In Section B.5, the output is given
when using the interface for the Lucas example described in this paper (provided that all
three analyses, that is, the F̄ test, the ORIC, and BMS, are performed).

In case the interface is not used, the output will be a bit different, namely in two ways:
1) The hypotheses of interest will be displayed in the way they are filled in Input.txt. When
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Number of models to be compared

<Fill in the number of models / hypotheses you want to compare; e.g.,>
4

Number of restrictions per model

<Fill in, for every model / hypothesis, the number of restrictions that represent that
model / hypothesis; e.g.,>
1

2

1

1

Ordering of means in restriction

<Fill in the ordering of the means / group numbers for each restriction for every model /
hypothesis. The orderings per restrictions are separated by an “enter”. The ordering
consists of the numbers 1 to “the total number of groups”. For more details see
“Basic Elements of Writing Constraints” and “Combinations of Basic Elements”; e.g.,>
1 2 3 4 5

5 3 1 2 4

3 4 2 1 5

3 1 4 5 2

1 2 3 4 5

(Order) Restrictions

<Fill in the restrictions. This must be done in a certain manner, which is explained in
“Basic Elements of Writing Constraints” and “Combinations of Basic Elements”;
e.g.,>
1 1 1 1 1

1 1 -3 -3 0

1 -3 -3 0 0

1 -3 -3 3 -3

0 0 0 0 0

When BMS is performed, an interval for equality relations (delta) is needed

and a parameter for prior vagueness (pv)

<Fill in δ ≥ 0 and pv > 0; e.g.,>
0.0 2.0

Table 5: Example Input.txt file with comments in angle brackets.

using the interface, the hypotheses of interest are stated in terms of “µi”, “>”, “<”, “=”, and
“,”.
2) The numbering of the hypotheses is different.

When using the interface and when H0 is included in the set of hypotheses, H0 will become
Hypotheses 1 in the output. When Hu is included in the set of hypotheses, Hu will become
Hypotheses 2, when H0 is also included, and Hypothesis 1, when H0 is not included. The
other hypotheses will also be adjusted to the appropriate hypothesis number. So, an order-
restricted hypotheses H1 will become Hypotheses 3 (when both H0 and Hu are specified) or
Hypotheses 2 (when only H0 or Hu is specified); et cetera.
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B. User manual of ConfirmatoryANOVA.exe with interface

B.1. Read, write or copy data

First of all, the data should be entered. Press on the Data button in the ConfirmatoryANOVA.exe
form (see Figure 1) to go the DataInput form (see Figure 2). The data can be entered man-
ually, by copying it from a file (say an SPSS or Excel file) or by reading it from a text (i.e.,
.txt) file. See also Section A.1.2 for a description of the data format.

When the data are read from a file or, otherwise, after clicking on the OK button, the data are
validated. In case of invalid data (e.g., in case no number is entered or in case a row has only
a group number or has only a data point), the corresponding lines are made red. The invalid
data should be corrected (by adjusting the data in the textbox/field or by adjusting the .txt

file and rereading the adjusted file) or deleted (e.g., when all lines should be deleted, by clicking
on the Clear Invalid Data button). After the adjustments, press the OK button. The data
will be validated again. Note that, in case of deleting data, the number of observations per
group (which is shown in the ConfirmatoryANOVA.exe form) will be adjusted automatically.
In case the data are valid, you return to the ConfirmatoryANOVA.exe form (see Figure 1).

Figure 1: ConfirmatoryANOVA.exe form.
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Figure 2: DataInput form.

B.2. Specify methods

From the data (and group membership), the number of groups and number of observations
per group are determined. Then, you must denote which analyses should be performed. A
certain analysis will be performed if the corresponding checkbox is checked.

In case BMS is performed, two additional specifications need to be made (in a popup-panel):
The desired δ and the prior vagueness pv. It holds that δ ≥ 0 and pv > 0. When specifying
exact equality restrictions in BMS, δ must be set to δ = 0. When specifying about equality
restrictions in BMS, δ must be set to δ > 0. In the latter case, one should carefully specify
the restrictions (see Section A.4). The default recommendation of pv is pv = 2.

For all three methods, the hypotheses of interest must be given explicitly (in the then appear-
ing panel). Specifying the order-restricted hypotheses will be explained in the next section.
When you do not want to specify any order-restricted hypothesis, you should uncheck the
Add (order-restricted) hypothesis/-es checkbox (see Figure 1). One should also specify
whether one wants to evaluate the classical null hypothesis (i.e., H0 : µ1 = . . . = µk) and the
classical alternative (i.e., Ha : µ1, . . . , µk), here also called the unconstrained hypothesis (see
Figure 1).

As discussed in Section A.5, the values for the seed value and the number of iterations can
be specified. This is done in the Settings form (see Figure 3) appearing when pressing the
Settings button.

More details on specifying the restrictions are given next.
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Figure 3: Settings form.

B.3. Specifying the order-restricted hypotheses

An (order-restricted) hypothesis, say H1, can be specified in the panel appearing when clicking
on the Add button in the Edit Hypothesis 1 panel (see Figure 4). Then fill in the hypothesis,
that is, fill in the group numbers and the corresponding constraints between the means of
these group. Note that a hypothesis can consist of multiple ‘restrictions’. To add another
restriction in, say H1, you must press the Add button in the Edit restriction(s) in H1

panel (see Figure 4).

As mentioned before, the numbers in a certain restriction always consists of the numbers 1 to
“the number of groups” (in the example, 5) and each number is used precisely once. It should
be noted that in case of 5 means and you want to evaluate H1 : µ3 > µ1 > µ4, you should fill
in H1 : µ3 > µ1 > µ4, µ2, µ5 or, better “3 > 1 > 4, 2, 5”. If the entry is a number greater
than “the number of groups” or the entry is not an integer, then the corresponding textbox
will be made red and an error message is given in the ConfirmatoryANOVA.exe form. The
check on using every number only once is done after pressing the Run button. In that case,
an error message will be given in the Progress Report panel and in Error.txt (see also the
next subsection).

One can also specify the classical H0 and/or the classical Ha as a hypothesis of interest. Note
that one should include H0 only when there is real interest in H0 (Kuiper and Hoijtink 2010).
We recommend to include Ha (when doing model selection) as a safeguard for choosing a weak
hypotheses (Kuiper and Hoijtink 2010). H0 and Ha do not need to be specified explicitly, one
can just check the corresponding checkboxes (see Figure 1 and Figure 4).

B.4. Error messages

Before pressing the Run button, one should check whether the requirements are met. When
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Figure 4: Specifying H1.

not all requirements are met and you press the Run button, a popup appears with the text“Not
all requirements are met yet.”. The requirements are that the data are valid, the specification
of δ and pv (if needed) is correct, and that the hypotheses (if any) are specified correctly. In
case a requirement is met the checkbox is checked; otherwise, it is not checked and an error
message is given in the ConfirmatoryANOVA.exe form.

Furthermore, error messages are built in to detect other wrongly stated input (e.g., when not
using every number precisely once in a (order) restriction). A popup will appear with the
text “Error in input. ... This run will be stopped.”. These error messages will be given in the
Progress Report panel in the ConfirmatoryANOVA.exe form (see Figure 1 and Figure 4) and
in Error.txt (which will be created in the folder where ConfirmatoryANOVA.exe is saved
in). In most cases the methods will not be performed and no output will be given.

When, for some reason, the error is not detected, a popup will appear with the text “The
program has stopped. No methods are performed. Check input. . . .”. In that case no output
will be given. One should look at the input again, especially the input needed for the method
during which the error occurred. When looking at the Progress Report panel one can get
a better idea of during which method the error has occurred. It should be noted that the
methods are performed in a fixed order: the F̄ test is performed first, then the ORIC and the
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programm ends with BMS (when all methods are performed). The progress report tells you
when the method has started (e.g., “The Fbar test is running...”) and when it is ended (e.g.,
“Fbar is performed”).

B.5. Output

Let the hypotheses of interest be the set of hypotheses specified in (2). As mentioned before,
in the output, these hypotheses will be referred to as H1, H3, H4, and H2 corresponding to
H0, H1, H2, and H3, respectively, in (2).

When ConfirmatoryANOVA.exe is done, the output file Output.txt (or the name you entered
in the Name of output file textbox) will be created in the folder where ConfirmatoryANOVA.exe
is saved in. The output file gives the results of the requested analyses. In the example, the
output for the three methods (i.e., F̄ , ORIC, and BMS), with δ = 0.3 and pv = 2, is:

This program is free of use. However, when results obtained with this

program are published, please refer to:

Rebecca M. Kuiper, Irene Klugkist, and Herbert Hoijtink (2010).

A Fortran 90 Program for Confirmatory Analysis of Variance.

Journal of Statistical Software, 34(8), 1-31.

URL http://www.jstatsoft.org/v34/i08/.

N.B. This paper is available upon request (R.M.Kuiper@uu.nl).

Summary of observed data

Group number, means, standard deviations, and sample sizes per group

1 2.33 1.86 30

2 1.33 1.15 30

3 3.20 1.79 30

4 2.23 1.45 30

5 3.23 1.50 30

Restricted means

Group number: 1 2 3 4 5

Sample means: 2.33 1.33 3.20 2.23 3.23

Hypothesis 1 2.46 2.46 2.46 2.46 2.46

Hypothesis 2 2.33 1.33 3.20 2.23 3.23

Hypothesis 3 2.33 1.33 3.21 2.23 3.21

Hypothesis 4 2.60 1.33 3.20 2.60 2.60

The hypotheses of interest are stated below.
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- Fbar test -

<See Section 2.1>

Results of the Fbar test for the null hypothesis 1 and the unconstrained

hypothesis 2

Hypotheses numbers Fbar value p-value

1 versus 2 30.27 0.00

Results of the ordered alternative Fbar test

Ordered-hypothesis number Fbar value p-value

H0 versus 3 30.26 0.00

H0 versus 4 22.91 0.00

Results of the ordered null Fbar test

Ordered-hypothesis number Fbar value p-value

3 versus Hu 0.01 1.00

4 versus Hu 7.36 0.07

Resisual sum of squares

Hypothesis 1 432.53

Hypothesis 2 0.00

Hypothesis 3 357.85

Hypothesis 4 375.99

The hypotheses of interest are stated below.

- ORIC -

<See Section 2.2>

The value of the Order-Restricted Information Criterion (ORIC) =

-2 * log likelihood + 2 * penalty:

for Hypothesis 1, ORIC = -2 * -292.27 + 2 * 2.00 = 588.54

for Hypothesis 2, ORIC = -2 * -278.05 + 2 * 6.00 = 568.10

for Hypothesis 3, ORIC = -2 * -278.05 + 2 * 3.19 = 562.49

for Hypothesis 4, ORIC = -2 * -281.76 + 2 * 3.14 = 569.79

The preferred hypothesis, according to the Order-Restricted Information
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Criterion, of the hypotheses to be compared is hypothesis number 3.

The hypotheses of interest are stated below.

- BMS -

<See Section 2.3>

The resulting Bayes factor values (of the order-restricted hypothesis

versus the unconstrained model) and the posterior model probabilities

(with respect to the whole set of models) are:

Hypothesis 1 0.00 0.00

Hypothesis 2 1.00 0.01

Hypothesis 3 67.94 0.96

Hypothesis 4 1.52 0.02

The preferred hypothesis, according to Bayesian model selection, of the

hypotheses to be compared is hypothesis number 3.

The hypotheses of interest are stated below.

Specification of the encompassing prior:

For all means, the same normal prior with mean

2.28
and variance

2.32
is used.

For the residual variance, a scaled inverse chi-square with

degrees of freedom

1.00
and scale parameter

2.50
is used.

- The hypotheses of interest -

Hypothesis 1 (= ‘H0’)

Restriction 1: mu1 = mu2 = mu3 = mu4 = mu5

Hypothesis 2 (= ‘Ha’)

Restriction 1: mu1 , mu2 , mu3 , mu4 , mu5
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Hypothesis 3

Restriction 1: mu5 = mu3 > mu1 > mu2 , mu4

Restriction 2: mu3 > mu4 > mu2 , mu1 , mu5

Hypothesis 4

Restriction 1: mu3 > mu1 > mu4 = mu5 > mu2
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