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This tutorial will describe and illustrate the options available in Con-
firmatoryANOVA.exe. This program is free of use. However, when results
obtained with this program are published, please refer to Kuiper and Hoij-
tink (2010) and/or Kuiper, Klugkist, and Hoijtink (2010). In the program,
the following methods can be performed:

• F̄ test

• Order-Restricted Information Criterion (ORIC)

• Bayesian Model Selection (BMS)

The model used in this tutorial and in the software is the ANOVA model:

yij = µi + εij, (1)

where yij is the jth observation (j = 1, . . . , ni) of the dependent variable for
group i (i = 1, . . . , k), µi is the mean of group i, and εij is the error term.
The error terms are independently and normally distributed, with expected
value 0 and variance σ2, that is, εij ∼ N (0, σ2).
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Modification Input Files

No matter what analysis should be performed, two text files have to be
modified (such that they apply to your data), namely Input.txt and Data.txt.

It should be noted that:

• The names of the text files are fixed and cannot be changed. These
files have to be text files (also known as ASCII files).

• The format of these files should not be changed, that is, do not add
empty lines and do not delete lines containing labels.

• The data in Data.txt should be complete, that is, missing data are not
allowed. Furthermore, a ’dot (”.”) is used as decimal separator, not a
comma (”,”).

First Half of Input.txt

First of all, you must denote which analyses should be performed. This has
to be done in Input.txt. A certain analysis will be performed if in the line
below the name of that analysis a 1 is filled in. It will not be performed,
when a 0 is filled in.

When ORIC and the F̄ test should be performed and BMS should not,
the first half of Input.txt should look as follows (when using the default val-
ues for the seed value and number of iterations):

Seed value and number of iterations (> 0) for Fbar test, ORIC, and BMS
123 100000 100000 500000
Perform F bar test, ORIC, BMS (1 = yes, 0 = no)
1 1 0

We will come back to the seed value and number of iterations later on the
tutorial in the section called “Set the Seed Value and Number of Iterations”.

Data.txt

Second of all, group membership and the corresponding data must be given
in Data.txt, where in the first column the group numbers must be given and
in the second column the corresponding data point yij. The order of the
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group numbers and data points does not matter as long as the group num-
ber corresponds to the data point in the same row. The following are three
examples of how Data.txt could look:

1 3.58 1 3.58 3 1.39
1 -0.15 2 1.67 2 1.85
· · · · · · 3 1.39 5 4.58
2 1.67 4 1.57 5 1.38
2 1.85 5 1.38 3 4.53
· · · · · · 1 -0.15 4 2.97
3 1.39 2 1.85 1 -0.15
3 4.53 3 4.53 2 1.67
· · · · · · 4 2.97 4 1.57
4 1.57 5 4.58 1 3.58
4 2.97 · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
5 1.38 · · · · · · · · · · · ·
5 4.58 · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·

Note that a dot (“.”) should be used as decimal separator. When a comma
(“,”) is used, only the number proceeding it is read (e.g., “3,58” is read as
“3”).

The group numbers do not need to be sequential. For example, if you
have a SPSS or Excel file with data for 10 groups and in the current analysis
you want to compare only 5 groups (which are not the first five). In that
case, you can just copy the appropriate data from the SPSS or Excel file to
a text file without adjusting the group numbers. In the software, the group
numbers will be made sequential; moreover, the order of the groups remain
the same. For example, if you have data with group numbers 1, 4, 5, 6, and
8 (whether the data are in order or not), these will become group numbers 1,
2, 3, 4, and 5, respectively. Note that, in specifying the restrictions (see the
next sections), you need to use the adjusted sequential group numbers. In
addition, the output will be given in terms of these adjusted group numbers.

From the data the number of groups and the number of observations per
group are determined.
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Basic Elements of Writing Constraints

In performing an F̄ test, in determining ORIC or in doing BMS, all the
hypotheses of interest must be given explicitly. So, one must specify (order-
restricted) hypotheses, that is, hypotheses with restrictions of the form µi −
µi′ ≥ 0 for some i, i′ = 1, . . . , k.

Note that it is also possible to specify a set of hypotheses without the
classical null H0 : µ1 = . . . = µk and/or alternative HA : µ1, . . . , µk. However,
we recommend to include the alternative HA (when doing model selection),
since it can be used to protect against choosing a weak hypothesis (Kuiper
and Hoijtink, 2010). Note that one should include H0 only when there is real
interest in H0.

In the F̄ test, the order-restricted hypotheses (like H1 : µ1 > µ2 > µ3)
are tested against H0 (“ordered alternative”) and HA (“ordered null”). If the
classical null and/or the alternative are included in the set of hypotheses, the
classical null will be tested against the classical alternative.

When using the ORIC or confirmatory BMS, several models/hypotheses
are compared to each other, for example, H1 : µ1 > µ2 > µ3, H2 : µ1 > µ2 =
µ3 and H3 : µ1, µ2, µ3.

The basic elements for writing down the hypotheses of interest are:

1. Representation of an equality sign (=)

Suppose the hypothesis of interest is µ5 = µ3, that is, µ5 = µ3, µ1, µ2, µ4.
The ordering of the group numbers in this restriction is represented by:
5 3 1 2 4. The restriction is represented by: 1 1 0 0 0, where the 1s indi-
cate that mean 5 and 3 belong to set 1 and are equal to each other, and
where 0 indicates that the corresponding mean is unrestricted. N.B. in
a restriction the first set of means is always labeled as 1, the second as
2 (and so on).

2. Representation of a greater than sign (>)

Suppose the hypothesis of interest is µ1 > µ3, µ2, µ4, µ5. The ordering
of the group numbers in this restriction is represented by: 1 3 2 4 5.
The restriction is represented by: 1 -3 0 0 0, where -3 means that mean
3 is smaller than mean 1. Thus, it represents µ3 < µ1, which is equal to
µ1 > µ3. Here again 1 indicates that mean 1 belongs to set 1. Because
of the inequality restriction between mean 1 and 3, mean 3 belongs to
set 2 (the importance of this will be made clear in the next section).
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3. Representation of a smaller than sign (<)

Suppose the hypothesis of interest is µ1 < µ2, µ3, µ4, µ5. The ordering
of the group numbers in this restriction is represented by: 1 2 3 4 5.
The restriction is represented by: 1 -1 0 0 0, where -1 means that mean
2 is greater than mean 1. Thus, it represents µ2 > µ1, which is equal
to µ1 < µ2.

4. Representation of a free parameter

When a mean is not constrained at all, it is called a free parameter. A
free parameter is represented by a ’0’.
Note that, in a hypothesis, a free parameter is represented by “, µi,”,
or when it is the last element in the restriction by “, µi”.

Every hypothesis can be represented by these basic elements in one or
more restrictions. For example, µ5 > µ3 < µ1, µ2 < µ4, can be represented
by the restrictions:
µ5 > µ3, µ1, µ2, µ4,
µ5, µ3 < µ1, µ2, µ4,
µ2 < µ4, µ5, µ3, µ1,
which can be represented by:

Ordering of means in restriction
5 3 1 2 4
5 3 1 2 4
2 4 5 3 1
(Order) Restrictions
1 -3 0 0 0
0 1 -1 0 0
1 -1 0 0 0

So, the ordering of the means in a certain restriction always consists of
the numbers 1 to ’the number of groups’ (in the example, 5) and each number
is used only once.

Combinations of Basic Elements

Often the hypothesis of interest can be represented in a smaller number of
restrictions than when using only the basic elements. The following shortcuts
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can be used:

1. µ5 = µ3 = µ1, µ2 = µ4

Because of the equality constraints (“=”), means 5, 3 and 1 belong to
set 1. Therefore, means 2 and 4 belong to set 2. Thus, this hypothesis
can be represented by the following ordering of the group numbers and
corresponding restriction:

Ordering of means in restriction
5 3 1 2 4
(Order) Restrictions
1 1 1 2 2

2. {µ5 = µ3 = µ1} > {µ2 = µ4}
Because of the equality constraints, mean 5, 3 and 1 belong to set 1,
and means 2 and 4 belong to set 2. Because of the constraint between
mean 1 and 2, mean 2 belongs implicitly to set 2. This hypothesis
can be represented by the following ordering of the group numbers and
corresponding restriction:

Ordering of means in restriction
5 3 1 2 4
(Order) Restrictions
1 1 1 -3 2

The 1s indicate the equality constraints between mean 5, 3 and 1,
the -3 represents the inequality constraint “>” between mean 1 and
2, and the 2 indicates the equality constraints between mean 2 and 4
(because mean 2 implicitly belongs to set 2). N.B. the restrictions µ5 =
µ1, µ5 > µ2, µ3 > µ2, µ5 > µ4, µ3 > µ4, µ1 > µ4 do not have to stated
explicitly, these will hold since it holds that µ5 = µ3, µ3 = µ1, µ1 > µ2

and µ2 = µ4.

3. µ5 = µ3 > µ1 > µ2 = µ4

This hypothesis can be represented by the following ordering of the
group numbers and corresponding restriction:
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Ordering of means in restriction
5 3 1 2 4
(Order) Restrictions
1 1 -3 -3 3

The 1s indicate the equality constraint between mean 5 and 3. The
-3s represents the inequality constraint “>” between mean 3 and 1 and
between 1 and 2. Note that mean 1 implicitly belongs to set 2 and
mean 2 implicitly to set 3. Therefore, the equality constraint between
mean 2 and 4 is represented by the 3, because mean 2 and 4 belong to
set 3.

4. µ5 = µ3 > µ1 > µ2 = µ4

Likewise, this hypothesis can be represented by the following ordering
of the group numbers and corresponding restriction:

Ordering of means in restriction
5 3 1 2 4
(Order) Restrictions
1 1 -3 -1 3

5. µ5 = µ3 > µ1 > µ2, µ4

This hypothesis can be represented by the following ordering of the
group numbers and corresponding restriction:

Ordering of means in restriction
5 3 1 2 4
(Order) Restrictions
1 1 -3 -3 0

Note that, mean 4 is a free parameters, that is, means which are not
restricted at all. The free parameters are denoted by a ’0’ and no
group numbers are assigned (directly or indirectly). Here, as in the
previous two examples, mean 2 belongs to group 3 and mean 4 belongs
to another group. However, this is not group 4. Another example is
given next.

6. µ5 = µ3, µ4, µ1 > µ2
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This hypothesis can be represented by the following ordering of the
group numbers and corresponding restriction:

Ordering of means in restriction
5 3 4 1 2
(Order) Restrictions
1 1 0 2 -3

The 1s indicate the equality constraint between mean 5 and 3. Note
that, as mentioned in the previous example, no group number is as-
signed to free parameters. So, mean 4 belongs to another group than
all the other means, but no group number is assigned. A 0 is filled in.
Mean 1 belong to the next group, that is, group 2. The -3 represents
the inequality constraint “>” between mean 1 and 2. Note that mean
2 indirectly belongs to group 3.

7. µ5 = µ3 > µ1 < µ2 = µ4

This hypothesis can be represented by the following ordering of the
group numbers and corresponding restriction:

Ordering of means in restriction
5 3 1 2 4
(Order) Restrictions
1 1 -3 -1 3

8. µ5 = µ3 > µ1 = µ2 > µ4

This hypothesis can be represented by the following ordering of the
group numbers and corresponding restriction:

Ordering of means in restriction
5 3 1 2 4
(Order) Restrictions
1 1 -3 2 -3

The 1s indicate the equality constraints between mean 5 and 3, the
-3s represents the inequality constraint “>” between mean 3 and 1
and between 2 and 4. Note that mean 1 implicitly belongs to set 2.
Therefore, the equality constraint between mean 1 and 2 is represented
by the 2.

8



In the program ConfirmatoryANOVA.exe error messages are built in
to detect wrongly stated hypotheses. But sometimes wrongly stated
hypotheses are not detected, because the stated hypothesis represents
another existing hypothesis. When accidently a 3 is given instead of a
2, another existing hypothesis is stated. Namely, the restriction “1 1 -3
3 -3” represents the hypothesis µ5 = µ3 > µ1, µ2 > µ4. So, care must
be taken in writing down the hypothesis of interest.

9. µ5 = µ3 > µ1, µ2 > µ4

This hypothesis can be represented by the following ordering of the
group numbers and corresponding restriction:

Ordering of means in restriction
5 3 1 2 4
(Order) Restrictions
1 1 -3 3 -3

Equalities and About Equalities in BMS

In the F̄ -test, in ORIC and in BMS for strict equalities (δ = 0), the two
hypotheses µ1 = µ2 = µ3 (specified by 1 restriction, with ordering of means
1 2 3, and (order) restrictions 1 1 1) and µ1 = µ2, µ2 = µ3 (specified by 2
restrictions, both with ordering of means 1 2 3, and (order) restrictions 1 1
0 and 0 1 1) are equivalent.

However, the BMS approach in the program also provides the option to
specify about equality constraints (δ > 0). In that case, the second hypoth-
esis is evaluated using |µ1 − µ2| < δ and |µ2 − µ3| < δ, whereas the first
hypothesis adds a third constraint: |µ1 − µ3| < δ. The results of the first
and second hypothesis may differ and therefore careful consideration of the
formulation of hypotheses is important.

Set the Seed Value and Number of Iterations

The calculation of the p-value of the F̄ and the penalty of the ORIC (i.e.,
PT ) and BMS are sampling based approaches. For example, when generating
data from a normal distribution (in order to determine the p-value of the F̄
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or the penalty of the ORIC), a seed value is needed. When using the same
seed value, the same data will be “sampled”. When looking at another seed
value in a rerun of the same problem, one can also see how stable the results
are. Thus, the p-value of the F̄ , the penalty of the ORIC (i.e., PT ), and the
results of BMS can differ for various seed values.

In case a result is not stable, the number of iterations needs be set higher.
In the F̄ test, the p-value depends on the number of iterations Rp. When
using the ORIC, the penalty is dependent on the number of iterations RPT .
When doing BMS, the Gibbs sampler is used, which is based on a minimum
of RBMS iterations. These values can also be set in the input, namely in
the second line of Input.txt (see Section ??). The default values of the
number of iterations in each method are: Rp = 100, 000, RPT = 100, 000,
and RBMS = 500, 000.

Note that the higher the number of iterations the higher the computing
time. If one lowers the number of iterations (in order to lower the computing
time), one must be aware that this probably affects the stability of the results.
Furthermore, when the initial number of iterations for BMS (i.e., RBMS) is
lowered, the computing time is not necessarily decreased, because of the
requirement of a minimum of 100 prior hits.

Error Messages

In the program ConfirmatoryANOVA.exe, error messages are built in to de-
tect wrongly stated hypotheses. However, it does not detect all wrongly
stated hypotheses, since the stated hypothesis can represent another existing
hypothesis, as is made clear in the previous section.

It is also possible to state other input wrongly. For example, the wrong
number of restrictions is given. When making a mistake, an informative
warning will be given.

It is, however, possible to make a mistake that we have not foreseen. In
that case, check the input in Input.txt and compare it to the data. If you
cannot solve the problem, send the input and data file to r.m.kuiper@uu.nl.
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Modification of the Second Half of Input.txt

For all three methods (i.e., the F̄ test, ORIC, and BMS), all hypotheses of
interest must be given explicitly. In case BMS is performed, two additional
specifications need to be made: The desired δ (for exact equalities specify
δ = 0, for an about equality any positive number can be specified) and the
prior vagueness pv (default recommendation pv = 2; any positive number
may be specified). This must be done in the second half of Input.txt.

If the hypotheses of interest are the set of hypotheses specified in Lucas
(2003), that is,

H0 : µ1 = µ2 = µ3 = µ4 = µ5,

H1 : µ5 = µ3 > µ1 > µ2, µ3 > µ4 > µ2, (2)

H2 : µ3 > µ1 > µ4 = µ5 > µ2,

HA : µ1, µ2, µ3, µ4, µ5,

Input.txt has the following format (where “< . . . >” is not part of the format,
but is used to give remarks):
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Number of models to be compared
<Fill in the number of models / hypotheses you want to compare; e.g.,>
4
Number of restrictions per model
<Fill in, for every model / hypothesis, the number of restrictions that
represent that model / hypothesis; e.g.,>
1
2
1
1
Ordering of means in restriction
<Fill in the ordering of the means / group numbers for each restriction
for every model / hypothesis. The orderings per restrictions are separated
by an “enter”. The ordering consists of the numbers 1 to “the total
number of groups”. For more details see “Basic Elements of Writing
Constraints” and “Combinations of Basic Elements”; e.g.,>
1 2 3 4 5
5 3 1 2 4
3 4 2 1 5
3 1 4 5 2
1 2 3 4 5
(Order) Restrictions
<Fill in the restrictions. This must be done in a certain manner, which
is explained above in “Basic Elements of Writing Constraints” and
“Combinations of Basic Elements”; e.g.,>
1 1 1 1 1
1 1 -3 -3 0
1 -3 -3 0 0
1 -3 -3 3 -3
0 0 0 0 0
When BMS is performed, an interval for equality relations (delta) is
needed and a parameter for prior vagueness (pv)
<Fill in δ ≥ 0 and pv > 0; e.g.,>
0.0 2.0

Note that the numbering of the hypotheses is 1 to “the number of mod-
els”, which is not the same as the numbering in (2). Thus, the following
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models/hypotheses will be analyzed in ConfirmatoryANOVA.exe:

H1 : µ1 = µ2 = µ3 = µ4 = µ5,

H2 : µ5 = µ3 > µ1 > µ2, µ4,

µ3 > µ4 > µ2, µ1, µ5,

H3 : µ3 > µ1 > µ4 = µ5 > µ2,

H4 : µ1, µ2, µ3, µ4, µ5.

Save and close

When you have modified Input.txt (such that it applies to your data), you
should save and close it.

Run ConfirmatoryANOVA.exe

When ConfirmatoryANOVA.exe is done, the output file Output.txt will be
created in the folder you are working in.

Output.txt

Output.txt gives the results of the requested analyses. In case of the example
of Input.txt, Output.txt will look as follows (provided that all the analyses,
that is, SWFq and TK, PCIC, exploratory BMS, F̄ , ORIC, and confirmatory
BMS, are performed):
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This program is free of use. However, when results obtained with this
program are published, please refer to:

Rebecca M. Kuiper, Irene Klugkist, and Herbert Hoijtink (2010).
A Fortran 90 Program for Confirmatory Analysis of Variance.
Journal of Statistical Software, 34(8), 1-31.
URL http://www.jstatsoft.org/v34/i08/.
N.B. This paper is available upon request (R.M.Kuiper@uu.nl).

Summary of observed data

Group number, means, standard deviations, and sample sizes per group
1 2.33 1.86 30
2 1.33 1.15 30
3 3.20 1.79 30
4 2.23 1.45 30
5 3.23 1.50 30

Restricted means

Group number: 1 2 3 4 5
Sample means: 2.33 1.33 3.20 2.23 3.23

Hypothesis 1 2.46 2.46 2.46 2.46 2.46
Hypothesis 2 2.33 1.33 3.20 2.23 3.23
Hypothesis 3 2.33 1.33 3.21 2.23 3.21
Hypothesis 4 2.60 1.33 3.20 2.60 2.60

– Fbar test –

Results of the Fbar test for the null hypothesis 1 and the unconstrained
hypothesis 4

Hypotheses numbers Fbar value p-value
1 versus 4 30.27 0.00
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Results of the ”ordered alternative” Fbar test

Ordered-hypothesis number Fbar value p-value
H0 versus 2 30.26 0.00
H0 versus 3 22.91 0.00

Results of the ”ordered null” Fbar test

Ordered-hypothesis number Fbar value p-value
2 versus Ha 0.01 1.00
3 versus Ha 7.36 0.07

Resisual sum of squares

Hypothesis 1 432.53
Hypothesis 2 357.85
Hypothesis 3 375.99
Hypothesis 4 0.00

– ORIC –

The value of the Order-Restricted Information Criterion (ORIC) =
-2 * log likelihood + 2 * penalty:

for Hypothesis 1, ORIC = -2 * -292.27 + 2 * 2.00 = 588.54
for Hypothesis 2, ORIC = -2 * -278.05 + 2 * 3.20 = 562.49
for Hypothesis 3, ORIC = -2 * -281.76 + 2 * 3.14 = 569.80
for Hypothesis 4, ORIC = -2 * -278.05 + 2 * 6.00 = 568.10

The preferred hypothesis, according to the Order-Restricted
Information Criterion, of the hypotheses to be compared is
hypothesis number 2,
with the following ordering(s) of means:
5 3 1 2 4
3 4 2 1 5
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and corresponding restriction(s):
1 1 -3 -3 0
1 -3 -3 0 0

– BMS –

The resulting Bayes factor (BF) values (of the order-restricted hypotheses
versus the unconstrained hypothesis) and the posterior model
probabilities (PMP) of the order-restricted hypotheses with respect to the
whole set of hypotheses:

BF PMP
Hypothesis 1 0.00 0.00
Hypothesis 2 66.21 0.96
Hypothesis 3 1.62 0.02
Hypothesis 4 1.00 0.01

The preferred hypothesis, according to confirmatory Bayesian model
selection, of the hypotheses to be compared is hypothesis number 2,
with the following ordering(s) of means:
5 3 1 2 4
3 4 2 1 5

and corresponding restriction(s):
1 1 -3 -3 0
1 -3 -3 0 0

Specification of the encompassing prior:

For all means, the same normal prior with mean
2.28

and variance
2.32

is used.

For the residual variance, a scaled inverse chi-square with
degrees of freedom
1.00

and scale parameter
2.50

is used.
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The parts which are in bold are the parts, which will change per data set
and/or set of hypotheses. More information about the output of the methods
can be found in Kuiper and Hoijtink (2010) and Kuiper et al. (2010).

When using the ORIC the preferred model/hypothesis is given, in this
example it is “hypothesis 2”. Besides that, the corresponding ordering(s) of
means and restriction(s) are given, which are given in the Input.txt. Thus,
according to the ORIC, H2 : µ5 = µ3 > µ1 > µ2, µ3 > µ4 > µ2 (i.e., H1

from (2)) is the preferred hypothesis. The same holds for BMS.
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