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Abstract 

Previous research indicated that interaction effects in analysis of variance are difficult to 

formulate, to evaluate, and to interpret. In this paper we propose to look at interaction effects 

from a different angle: not in terms of analysis of variance induced main and interaction effects, 

but in terms of what a researcher expects about the ordering of and differences between group 

means. We introduce two methods which can be helpful in formulating expected orderings and 

differences. Furthermore, we compare three ways to evaluate such hypotheses: factorial analysis 

of variance with post-hoc tests, planned contrasts, and Bayesian model selection. Formulating, 

evaluating and interpreting interaction effects will be illustrated with examples of a 2x2 and a 2x6 

factorial design. 
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Introduction 

Researchers in the social sciences, whether conducting experiments or survey research, have 

expectations about the ordering of and the differences between group means. As the current 

practice tends to use analysis of variance (ANOVA) where there is an interest in group means, 

researchers are bound to think in terms of main effects and interaction effects. But do these 

effects correspond to what a researcher expects about the group means involved? We do not 

think so. When talking to social scientists and when reading their papers it becomes clear that 

they often formulate their expectations or hypotheses in terms of orderings of group means (Van 

Wesel, Boeije, & Hoijtink, submitted manuscript) not in terms of main or interaction effects. For 

example, in a 1x3 design, they write that they expect that the mean of group 1 is higher than the 

means of group 2 and 3, they do not write that they expect a main effect for groups. The same 

holds for expectations about main effects in more complicated, factorial, designs. When the 

expectation concerns an interaction effect, writing it down in exact terms (an ordering of the 

group means) gets more complicated and what is expected precisely is generally unclear. In this 

paper, we argue that expectations about interaction effects can be made more transparent by 

handling them in a similar way as expectations about main effects, in terms of orderings of and 

differences between group means. In the current article expectations and hypotheses are used 

interchangeable. In order to achieve transparency in interaction effect expectations we offer 

researchers in the social sciences two aids for formulating them: means plots and graphic 

representations of experimental designs. 

The issues concerning interaction effects do not stop with formulating expectations 

about them; evaluating them can also lead to confusion. Currently, the most commonly used 

approach to evaluate interaction effect hypotheses in the context of factorial ANOVA is to 

follow up a significant (ANOVA) F-test with a post-hoc procedure to see where the differences 

are (e.g., Bonferroni, 1936; Keuls, 1952; Newman, 1939; Tukey, 1949). In such a post-hoc 

procedure one can test the simple main effects, which involves one test per level of each factor, 

or one can use pairwise comparisons, which involves one test per pair of means. As a result of 

such an analysis we end up with a considerable amount of F-test statistics, t-test statistics and 
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corresponding p-values, which can be difficult to draw conclusions from, especially with concern 

to the correctness of and amount of support for a specific expectation (Van de Schoot et al., 

2011). These issues become more complex if the factorial design becomes more complicated (for 

instance in a three instead of two factorial design). Therefore, in order to achieve transparency in 

the evaluation of interaction effect expectations, we discuss two alternative analysis techniques 

that correspond better to what researchers are interested in (how correct their specific 

expectations about group means are) and whose results are easier to interpret: planned contrasts 

(e.g., Rosenthal, Rosnow, & Rubin, 2000) and Bayesian model selection for (in)equality 

constrained hypotheses (e.g., Hoijtink, Klugkist, & Boelen, 2008). 

Difficulties concerning interaction effects in factorial ANOVA can already be found in a 

2x2 design, as was initially shown by Rosnow and Rosenthal (1989a), which lead to a series of 

papers and replies on the topic. This will be elaborated on in the next section. After introducing 

the two examples used throughout this paper (a 2x2 factorial design and a 2x6 factorial design), 

we will propose two methods that can be helpful when formulating interaction effect hypotheses. 

Subsequently, two different methods to evaluate these hypotheses will be described and 

compared to the use of factorial ANOVA with post-hoc tests. Finally, conclusions will be drawn. 

 

The interaction effect debate 

An article by Rosnow and Rosenthal (1989a) opened a debate on the definition of and 

interpretation of interaction effects in analysis of variance. A second article on this topic followed 

a few years later (Rosnow & Rosenthal, 1995). In these articles Rosnow and Rosenthal state that 

interaction effects are often not correctly understood. According to them, the mistake most 

researchers make is to interpret a significant interaction effect in ANOVA by looking at the cell 

means. They state that every cell mean is composed of partly interaction effects and partly main 

effects. In their 1995 article they describe the hypothetical situation where researchers want to 

investigate the effects of patient's sex and therapist's sex on therapy effect (for the design see 

panel I of Table 1). The hypothetical researchers want to evaluate the following interaction effect 

hypothesis denoted by HRR: 
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HRR : µ1 > µ2 > µ3 = µ4, 

where µ denotes a mean and its subscript indicates the group number. If the interaction effect in 

the omnibus (two way ANOVA) test they use is found to be significant, the researchers will 

conclude that there is indeed an interaction effect and they will refer the reader to look at the cell 

means (descriptive statistics) to see what the effect looks like. Although this approach is 

commonly used, according to Rosnow and Rosenthal, this interpretation of what the interaction 

effect looks like is incorrect. This incorrectness can be explained by unraveling the variance that 

is explained by each test in the two-way ANOVA. The total amount of variance consists of: 1) 

the variance that is explained by both main effects, leaving unexplained residual variance 2) this 

residual variance can be further explained by the interaction effect, still leaving some residual 

variance. From this it follows that the interaction effect explains part of the variance which is left 

after the main effects explained their part. 

- Insert Table 1 about here – 

Rosnow and Rosenthal propose the following approach to investigate hypothesized 

interaction effects: Do not look at the cell means but calculate the residual cell means and use 

these to reveal the pure interaction effect (interaction effects without the main effects). Panels II, 

III and IV of Table 1 are equal to Table 3 from Rosnow and Rosenthal (1995), and show how 

these residual cell means can be calculated. Panel II shows the hypothetical cell means, the row 

and column effects and a grand mean (G). The estimated cell means (panel III of Table 1) are 

calculated by the grand mean G plus the row effect plus the column effect. A residual cell mean 

(panel IV of Table 1) is calculated as the (hypothetical) cell mean minus the estimated cell mean. 

- Insert Figure 1 about here – 

Corresponding to panel II, III and IV of Table 1, Figure 1 shows means plots for the 

group means (left plot), the estimated cell means (middle plot), and the residual cell means (right 

plot). As can be seen in this figure, the interaction effect displayed by the hypothetical cell means 

(left plot) differs from the interaction effect displayed by the residual cell means (right plot). 

Rosnow & Rosenthal argue that when researchers use the left plot (cell means) to interpret the 

interaction effect they actually do not interpret the interaction effect in a pure manner, but that 
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they interpret it simultaneously with the main effects. When researchers interpret the interaction 

effect as shown in the right plot (residual cell means), they interpret the pure interaction without 

the main effects being present. 

Abelson (1996), Meyer (1991), Petty, Fabrigar, Wegener, and Priester (1996) and Sohn 

(2001) replied to the arguments made by Rosnow and Rosenthal. Their main point concerned the 

definition of what an interaction effect is. These authors describe a difference in what an 

interaction effect is to an applied scientist and what it is to a statistician. For applied scientists, an 

interaction effect denotes the idea that an effect is different for different groups (or at different 

levels of a certain factor). They want to explain how the differences came about, they see the 

group means and wonder how they came to be as they are; i.e., they are interested in the cell 

means. For statisticians, an interaction effect is part of a factorial ANOVA and therefore it 

explains a part of the variance that could not be explained by the main effects; statisticians are 

interested in wherein simple main effects differ, i.e., the residual cell means. Rosnow and 

Rosenthal (1991, 1996) responded by repeating their previous arguments, that interaction effect 

cannot be interpreted by looking at the cell means. 

This difference in perspective on what an interaction effect comprehends influences 

which analysis technique is appropriate to use. When a scientist has a hypothesis about the pure 

interaction effect - defined by the residual cell means as described by Rosnow and Rosenthal - it 

can be tested using an omnibus ANOVA. When a scientist has a hypothesis about the ordering 

of the group means - the cell means - planned contrasts or other appropriate tests should be used 

(Meyer, 1991; Petty et al., 1996). 

Although Rosnow and Rosenthal are correct from a statistical point of view, this seems 

to have no practical value for applied social science researchers who are interested in a specific 

ordering of the group means. As the applied scientists are the ones in need of techniques to 

analyze their expectations adequately, we propose to take their perspective as our basic principle: 

Interaction effects as residual cell means (and thus factorial ANOVA) are not of interest; what is 

of interest is the ordering of and the differences between the group means, thereby eliminating 

the `factorial' in the design. Consequently, a researcher's expectation is of great importance; only 
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when such expectations are established can we start to think about how to analyze them. It 

should be noted that in al of the articles that contributed to the debate, hypotheses concerning 

interaction effect are written in terms of directional or inequality constrained hypotheses. 

The debate opened by Rosnow and Rosenthal dealt only with the 2x2 factorial design for 

the effects of patient's sex and therapist's sex on therapy effect. This example will be used for 

explanatory purposes throughout this paper. In addition to the relatively simple 2x2 design, we 

introduce an example of a 2x6 factorial design in the next section. 

 

Entrepreneurial intentions: a 2x2 example 

This example is based on a paper by Gupta, Turban, and Bhawe (2008). The authors investigated 

the effect of implicit and explicit activation of gender stereotypes on men's and women's 

intentions to pursue a (masculine) career as entrepreneur. The experimental design they used was 

a 2 (participant gender) x 6 (stereotype activation conditions) between-subjects design. The six 

stereotype activation conditions were: control, explicit masculine stereotype, implicit masculine 

stereotype, explicit feminine stereotype, implicit feminine stereotype and nullified stereotype. The 

design and descriptive statistics can be found in Table 2. 

- Insert Table 2 about here – 

In the introduction section of their paper the authors stated three hypotheses concerning 

an interaction effect.  

Interaction effect hypothesis 1 (H1): `Respondent gender and stereotype activation interact such that men will 

report stronger entrepreneurial intensions when presented with an implicit versus an explicit masculine stereotype 

whereas women will report stronger entrepreneurial intensions when presented with an explicit versus an implicit 

masculine stereotype.' (Gupta et al., 2008, p. 1055) 

Interaction effect hypothesis 2 (H2): `Respondent gender and stereotype activation interact such that women 

will report stronger entrepreneurial intensions when presented with an implicit versus an explicit feminine stereotype 

whereas men will report stronger entrepreneurial intensions when presented with an explicit versus an implicit 

feminine stereotype.' (Gupta et al., 2008, p. 1055) 
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Interaction effect hypothesis 3 (H3): `Respondent gender and stereotype activation interact such that men will 

report significantly stronger intentions than women in the no stereotypical information condition (control), but men 

and women will report similar entrepreneurial intentions in the stereotype nullified condition.' (Gupta et al., 

2008, p. 1055)  

Note that all hypotheses are stated in terms of `stronger than', indicating an ordering in the group 

means. 

A total of 469 students participated in the study. These participants read a one-page 

article about entrepreneurship which contained one of the six experimental manipulations for 

stereotype activation. In the control condition, participants read an article that did not mention 

gender or gender differences in entrepreneurship. In the two masculine conditions entrepreneurs 

were associated with masculine characteristics (aggressive, risk taking, and autonomous) and in 

the two feminine conditions entrepreneurs were associated with feminine characteristics (caring, 

love to network, and humble). In the implicit condition, masculine or feminine characteristics 

were described. In the explicit condition, participants were told that entrepreneurs show 

characteristics of American masculinity/femininity and that so far as entrepreneurship is 

concerned, it pays to have masculine/feminine characteristics in addition to the aforementioned 

masculine or feminine characteristics. In the nullified condition, the article stated that 

entrepreneurs show characteristics of both men and women. 

After reading the article the participants were asked to complete a four-item 

questionnaire with a 5-point scale to measure entrepreneurial intentions, resulting in a mean score 

between 1 and 5. The items concerned how interested the participants were in starting a business, 

acquiring a small business, starting and building a high-growth business, and acquiring and 

building a company into a high-growth business in the next 5 to 10 years (Zhao, Seibert, & Hills, 

2005). 

 

Formulating interaction effect hypotheses 

The authors of the example described in the previous section stated expectations, expressed as 

hypotheses, in their article. As we argue that what is of interest to an applied researcher is the 
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starting point of developing analysis techniques, we think it necessary to carefully elicit what 

those researchers are interested in. Consequently, we want to know exactly what they expect. 

However, arriving at such specific hypotheses, specifically those concerning an interaction effect, 

can be quite difficult. For this reason in this section we will propose two aids that might be 

helpful in formulating hypotheses: means plots and graphic designs. Using the 2x2 and 2x6 

examples we will show the advantages and disadvantages of both aids. 

 

The 2x2 example 

Let us conduct a thought experiment using the example of the effect of therapist's sex and 

patient's sex on treatment effect, as was presented in Table 1. In this experiment we elicit 

hypotheses from four hypothetical researchers (A, B, C and D) using both aids. 

 

Aid 1: means plot. The first aid that can be used to elicit and formulate (interaction effect) 

hypotheses is a means plot. In our thought experiment we ask the four hypothetical researchers 

to draw a means plot of what they think the effect will look like in the population. When they 

draw such a plot, they need to think thoroughly about how each group mean relates to all the 

other group means. This is the point at which the hypotheses are actually elicited. The means 

plots of all four researchers can be found in Figure 2, where the circled numbers in the plots 

denote the four groups. The scale on the y-axis can be ignored at this stage and will be revisited 

in the section on analyzing interaction effect using planned contrasts. The means plots will be 

used to formulate a statistical hypothesis consisting of two parts: Part 1 is an ordering of the 

group means and Part 2 specifies the interaction effect. The following operators will be used to 

indicate an ordering of the means: smaller than `<', larger than `>', equal to `=' or no relation `,'. 

In addition to these operators, binary operators such as minus `-' and plus `+' can be used to 

specify differences between (combinations of) group means. 

- Insert Figure 2 about here – 

 The means plot of researcher A can be seen in Figure 2A. For the first part of the 

statistical hypothesis we order the group means: 
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HA part 1: µ4 < µ3 < µ2 < µ1. 

For the second part of this hypothesis we describe a difference between differences (see the 

vertical arrows in Figure 2A): 

HA part 2: µ2 - µ4 = µ1 - µ3. 

When both parts are combined, we get the complete statistical hypothesis describing the 

expectation of researcher A: 

HA: µ4 < µ3 < µ2 < µ1 & µ2 - µ4 = µ1 - µ3. 

The means plot of researcher B is represented by Figure 2B. For part 1 of the hypothesis 

(ordering the means) we get the same statistical hypothesis as we did for researcher A. The 

difference between the two expectations is expressed in the second part, where the difference 

between µ2 and µ4 is expected to be smaller than the difference between µ1 and µ3: 

HB: µ4 < µ3 < µ2 < µ1 & µ2 - µ4 < µ1 - µ3. 

The means plot of researcher C is shown in Figure 2C. Compared to researcher B's means plot, 

this plot shows a different expectation about the ordering of the group means and therefore a 

partly different expectation about the difference between differences, resulting in: 

HC: µ2 < µ3 < µ4 < µ1 & µ4 - µ2 < µ1 - µ3. 

The final means plot is drawn by researcher D and is displayed in Figure 2D. When ordering the 

group means and adding the difference between differences, it leads to: 

HD: {µ2 = µ3 = µ4} < µ1 &  µ2 - µ4 < µ1 - µ3. 

Note that the second part of the statistical hypothesis D is not necessary to describe the expected 

effect; the complete hypothesis is implied by the combination of equality and inequality 

constraints in the first part of the hypothesis. 

 

Aid 2: graphic design. Graphic representations of the experimental design can also be used to elicit 

expectations about the outcomes of the research. In this approach the four previously mentioned 

hypothetical researchers were asked to put constraints (< or > or =) between the experimental 

groups using a graphic representation of an experimental design. 

- Insert Figure 3 about here – 
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 The graphic designs for the four researchers can be found in Figure 3. Figure 3A displays 

the expectation of researcher A. He placed > signs between female and male therapists for both 

male and female patients representing his expectation that female therapists will gain better treatment 

effects than male therapists (better treatment effects equals higher scores). He also placed v signs 

(rotated >) between male and female patients representing his expectation that female patients will 

gain better treatment effects than male patients. In this example, with four groups, six relationships (one 

between each pair) and thus six constraints can be specified. Thus far only four of these 

relationships are specified. As this researcher has ideas about all relationships between the group 

means, the diagonal lines need to be taken into account as well. Therefore, the researcher added 

an inequality constraint on the diagonal line between female patients with a male therapist and 

male patients with a female therapist. It is not necessary to put a constraint on the other diagonal 

line, as the constraints present completely determine the ordering of all of the means. Now the 

first part of HA, the ordering, is captured. To describe the specific expected difference between 

differences, indicators need to be added to the design. This is done by the superscript `I' between 

female and male patients with a female therapist and female and male patients with a male 

therapist. When constraints share a superscript it denotes which constraint is compared to which 

other constraint. As the constraints between these groups are similar, `v', it is stated that the 

difference between these groups is equal. This (non-existing) interaction effect expectation 

corresponds to Figure 2A and HA. 

 Graphic design Figure 3B is the expectation of researcher B. He placed constraints 

between the group means that are in the same direction as those of researcher A, leading to an 

equal ordering of the means. However, his expectation concerning the specific interaction effect 

is different than that of researcher A. To indicate that therapist's sex has a larger effect on female patients 

than on male patients 1) superscripts are placed between female and male patients with a female 

therapist and female and male patients with a male therapist to indicate that those constraints will 

be compared and 2) a double larger than sign, >>, is placed between female and male patients 

with a female therapist to indicate that this difference will be larger than the difference between 
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female and male patients with a male therapist. This expectation corresponds to Figure 2B and 

HB. 

The expectations of researcher C are represented by Figure 3C. First, he placed 

constraints to determine the order of the group means and second, he placed superscripts on two 

constraints to indicate which ones are compared and a >> for the expected difference between 

differences. This expectation corresponds to Figure 2C and HC. 

Finally, researcher D's expectation is shown in Figure 3D. Note that he does not have to 

specify constraints on the diagonals as all relationships are already determined due to the equality 

signs. This expectation corresponds to Figure 2D and HD. 

 

The 2x6 example 

Because this example is based on an existing paper, we can only guess how the researchers 

created their hypotheses would they have used a means plot or a graphic design. As will be 

shown, the hypotheses they state in their article are quite unspecific, leaving room for several 

competing statistical hypotheses. 

 

Aid 1: means plot. When attempting to draw a means plot for the hypotheses stated in the 

introduction of Gupta et al. (2008), we observe that we do not know the relationships between all 

group means. We will illustrate this for H1. We only know that men will report stronger entrepreneurial 

intensions when presented with an implicit versus an explicit masculine stereotype and that women will report 

stronger entrepreneurial intension when presented with an explicit versus an implicit masculine stereotype, telling 

us that the effect will be different for men and women (interaction effect). However, we do not 

know whether men will score higher than women in general (main effects), nor if there are any 

expectations concerning the other groups. Figure 4 illustrates the issue; it shows two possible 

means plots corresponding to H1. 

- Insert Figure 4 about here – 
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The left panel of Figure 4 shows a scenario in which we assume that there is a main 

effect for sex where entrepreneurial intentions of men are higher than entrepreneurial intentions 

of women, leading to: 

H1a : µ9 < µ2 < µ8 < µ3 & µ8 - µ2 < µ3 - µ9 & µ1, µ4, µ5, µ6, µ7, µ10, µ11, µ12, 

 where the first part represents the ordering of the group means and the second part represents 

the difference between differences. The third part denotes that the other means are 

unconstrained, i.e., it is not hypothesized how they relate to each other or to the means in parts 1 

and 2. The right panel of Figure 4 shows another possibility. In this scenario we expect the effect 

of (masculine) stereotype on entrepreneurial intentions to be inversely proportional for men and 

women leading to: 

H1b: {µ2 = µ9} < {µ3 = µ8} & µ8 - µ2 = µ3 - µ9 & µ1, µ4, µ5, µ6, µ7, µ10, µ11, µ12. 

Again, the first part represents the ordering of the group means and the second part represents 

the (inversely proportional) difference between differences, although this part is redundant due to 

the implications imposed by the other constraints. 

 

Aid 2: graphic design. Figure 5 displays the experimental design with constraints for H1, H2 and H3 

stated in Gupta et al. (2008). For H1 we know that men will report stronger entrepreneurial intensions 

when presented with an implicit versus an explicit masculine stereotype leading to a "<" sign between µ2 and 

µ3, and that women will report stronger entrepreneurial intensions when presented with an explicit versus an 

implicit masculine stereotype leading to a ">" sign  

- Insert Figure 5 about here – 

between µ8 and µ9, shown in the H1 row of Figure 5. This design leads to the following 

hypothesis: 

H1: µ2 < µ3 & µ8 > µ9 & µ1, µ4, µ5, µ6, µ7, µ10, µ11, µ12. 

The H2 row in Figure 5 shows that men will report stronger entrepreneurial intensions when presented with 

an explicit versus an implicit feminine stereotype leading to a ">" sign between µ4 and µ5, and that women 

will report stronger entrepreneurial intensions when presented with an implicit versus an explicit feminine stereotype 

leading to a "<" sign between µ10 and µ11. This leads to: 
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H2: µ4 > µ5 & µ10 < µ11 & µ1, µ2, µ3, µ6, µ7, µ8, µ9, µ12. 

The final row of Figure 5 shows the third hypothesis which states that men will report significantly 

stronger intentions than women in the no stereotypical information condition (control)} leading to a "v" sign 

between µ1 and µ7, and that men and women will report similar entrepreneurial intentions in the stereotype 

nullified condition leading to the "=" sign between µ6 and µ12, resulting in: 

H3: µ1 > µ7 & µ6 = µ12 & µ2, µ3, µ4, µ5, µ8, µ9, µ10, µ11. 

The examples show that the use of means plots can be recommended when the 

relationships between all group means in the design are covered by the expectation, as was the 

case in the 2x2 example. Placing constraints in a graphic design is the most advantageous aid 

when not all relationships are clear, as was the case for the 2x6 example. Drawing a means plot is 

straightforward to use and commonly known. As all relationships need to be specified for this 

aid, it forces researchers to think more thoroughly about what they expect. On the other hand, 

researchers need to be aware of the fact that all relationships are specified and consequently that 

they might over-specify their expectations (when relationships are `unintentionally' established 

during drawing, see the example given in Figure 4). Another drawback of the means plots aid is 

that they become hard to draw for higher order factorial designs. Using a graphic design has the 

advantage of not having to specify all relationships. This might be especially convenient when a 

design is large, i.e., when there are a lot of group means or for higher order factorial designs. 

However, one needs to be aware of under-specifying expectations, as diagonal lines need to be 

drawn in the table, which are easy to forget. It should be noted that irrespective of which aid is 

preferred, both can be helpful for the elicitation of expectations, making formulating hypotheses 

a substantial part of conducting social science research. 

 

Analyzing interaction effects 

Once the directional hypotheses are formulated, a prudent choice has to be made about how to 

evaluate them. In the next subsections we will discuss three techniques that can be used to 

evaluate (in)equality constrained hypotheses, in which situations these techniques are appropriate 



Formulating and Evaluating Interaction Effects 

 

 14 

and what the advantages and disadvantages of each of the techniques are using the 2x2 example. 

Thereafter, the 2x6 example will be used as an illustration of each technique.  

 

Analysis using factorial ANOVA 

The most commonly used approach to evaluate hypotheses concerning group means is 

performing a factorial ANOVA. The number of performed F-tests depends on the experimental 

design as an F-test is performed for each main effect and for each interaction effect. These tests 

evaluate, 

H0: there is no main effect, 

Ha: there is a main effect, 

for all main effects and 

H0: there is no interaction effect, 

Ha: there is an interaction effect, 

for all interaction effects. When such an F-test results in a p-value smaller than .05 the omnibus 

ANOVA is followed up by a post-hoc procedure in order to investigate which group means 

differ from one another (e.g., Bonferroni, 1936; Keuls, 1952; Newman, 1939; Tukey, 1949).. We 

will discuss two commonly used post-hoc procedures: the pairwise comparisons approach and 

the simple main effects approach. These procedures have an exploratory character and 

consequently, p-values are two-sided.  

In the pairwise comparisons approach, several t-tests are performed simultaneously for 

all possible sets of two group means. For example, in case of the 2x2 design there are 4 groups 

leading to 4 over 2 = 6 pairs of group means and corresponding t-tests (H0: the two group means are 

equal, Ha: the two group means differ). Because multiple tests are performed simultaneously the α-level 

needs to be corrected (e.g., Ramsey, 2002; Shaffer, 1995). This can be done in several ways, such 

as the Bonferroni correction (Bonferroni, 1936), a correction by Tukey (1949) or a method for 

correction by Sheffé (Scheffé, 1953). Results of pairwise comparisons can be interpreted in terms 

of similarities and differences between two group means, as these tests are two-sided. For 

example: there is a significant difference between female patients with a female therapist and female 
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patients with a male therapist and there is a significant difference between male patients with a female therapist 

and male patients with a male therapist, but female patients with a male therapist and male patients with a 

female therapist not differ significantly. With respect to a hypothesized interaction effect the 

descriptive statistics need to be consulted in order to see whether or not the expected effect is 

present. Two things need to be noted here: 1) the expected effect is not tested and 2) this is 

exactly what Rosnow and Rosenthal (1996, 1995, 1991, 1989b, 1989a) argue is incorrect.  

 The simple main effects approach (or simple effects analysis) involves evaluating the 

effect of one factor at all levels of a second factor (e.g., Field, 2005, p. 412-413). This means that 

an F-test is performed per level of a factor, for each factor. For example, in the 2x2 example, this 

means performing 2 F-tests for the simple main effects of patient sex (i.e., is there a difference 

between male and female patients with a male therapist? And is there a difference between male and female 

patients with a female therapist?) and 2 F-tests for the simple main effects of therapist sex (i.e., is there 

a difference between male and female therapists when it concerns male patients? And is there a difference between 

male and female therapists when it concerns female patients?). For this procedure, as with the pairwise 

comparison approach, multiple tests are performed so the type 1 error needs to be controlled by 

adjusting the α-level.  The results of these (two-sided) tests can be interpreted as the existence of 

effects of a factor (therapist's sex) within a level of another factor (patients' sex), i.e., there is an 

effect of therapist's sex for male patients and there is an effect of therapist's sex for female patients. With respect 

to a hypothesized interaction effect we would expect that the simple main effect at one level of a 

factor is different than the simple main effect at another level of the same factor. For example 

there is an effect of therapist's sex for male patients but there is no effect of therapist's sex for female patients. 

Equal to the pairwise comparison approach, the descriptive statistics need to be consulted in 

order to investigate whether or not the expected effect is present.  

 

Analysis using Bayesian model selection 

Another method is a Bayesian technique to evaluate (in)equality constrained hypotheses (Mulder, 

Hoijtink, & Klugkist, 2010; Van Wesel, Hoijtink, & Klugkist, in press; Hoijtink et al., 2008). More 

information, articles and software can be found on http://tinyurl.com/informativehypotheses. 
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This method concerns a model selection procedure (in contrast to a null hypothesis testing 

procedure). Therefore, the relevant question is `Which of the following hypotheses is the best 

hypothesis in terms of a balance between (model) fit and (model) complexity?’ The hypotheses of 

interest in the 2x2 example can, for instance, be: the classical null hypothesis 

H0: µ1 = µ2 = µ3 = µ4, 

the classical alternative hypothesis (Ha), now called the unconstrained hypothesis (Hunc) 

Hunc: µ1, µ2, µ, µ4, 

and the (in)equality constrained hypothesis A: 

HA: µ4 < µ3 < µ2 < µ1 & µ2 - µ4 = µ1 - µ3. 

        The results of this analysis are expressed by one Posterior Model Probability (PMP) for each 

hypothesis. A PMP is a value between 0 and 1 that can be interpreted as the relative amount of 

support found in the data for each hypothesis under consideration. When, for example, 

PMP0=.10, PMPunc=.10 and PMPA=.80 (note that these values add up to one) we learn that 

hypothesis A is the most likely hypothesis within this set of hypotheses and we conclude that male 

patients with a male therapist gain the least therapy effects, followed by male patients with a female therapist, which 

in their turn are followed by female patients with a male therapist, leaving female patients with a female therapist 

as the group with the highest therapy effect. Important is that in contrast to a classical p-value, a PMP 

does not render an accept/reject decision with respect to the null hypothesis. If, for example, the 

PMPs are .50, .00 and .50, respectively, the conclusion would be that the data at hand can't 

distinguish between H0 and HA i.e., both hypotheses are equally likely. As this technique concerns 

model selection it would also have been possible to add the other three (competing) hypotheses 

HB, HC and HD to the previously mentioned set of hypotheses. 

 

Analysis using planned contrasts  

The last method we present here is that of planned contrasts. This technique is extensively 

described in Rosenthal et al. (2000) and involves specifying contrasts which are evaluated using 

the F- or t-test statistic. The ordering under HA (µ4 < µ3 < µ2 < µ1) can, for instance, be captured 

in the standard linear contrast -3, -1, 1, 3, respectively. If the sample means are indeed increasing 
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(e.g., the sample means are 10, 20, 30, 40, respectively) then the contrast results in a positive value 

(e.g., C=-3*10 -1*20 + 1*30 + 3*40). A contrast value C can be calculated by ∑
=

⋅=

J

j

jjcC
1

µ , 

where j=1,...,J denotes the number of groups and cj denotes a contrast value for group j. 

Consequently, a contrast test evaluates 

H0: C=0, 

Ha: C>0, 

As Ha is a directional hypothesis it concerns a one-sided test. For this approach it is not necessary 

to start with an omnibus ANOVA.  

 Each contrast value C is formulated by assigning specific contrast values to the groups 

(cj) such that C>0 corresponds to support for the directional hypothesis. How this is done will be 

described next. For the 2x2 example the means plots in Figure 2 will be used as reference point. 

For eliciting the interaction effect hypotheses as described in the previous section, the scale on 

the y-axis of the plots was not important. However, for establishing contrast values this scale 

becomes very important, as the value of a group on the y-axis will be used as weight. 

Consequently, these weights do not only describe the ordering of the group means, they also 

describe a relative effect. Figure 2B show that the weights for HB are 4, 2, 1, 0, however, they could 

also haven been, for instance, 8, 2, 1, 0. Using these latter weights, the relative distance between 

the first mean and the other means is much larger. Note that when means plots are used for this 

purpose, this relative effect needs to be elicited as well. Reading the values (weights) per group 

from the y-axis of Figure 2 for each hypothesis leads to the upper panel of Table 3. This panel 

also displays a mean weight per hypothesis. 

- Insert Table 3 about here – 

        These weights are not contrast values yet, as the mean of the contrasts values should be 

zero (see H0 and Ha above and Rosenthal et al., 2000). Therefore, the weights in the upper panel 

of Table 3 need to be converted. In order to do so, the mean weight of a hypothesis is subtracted 

from the group weights of that hypothesis, leading to the middle panel of Table 3. As can be 

seen, the mean weight per hypothesis is now zero. The contrast values (cj) that are used in the 
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analysis are usually expressed as integers and consequently, the weights are multiplied to get such 

integers (Rosenthal et al., 2000). These integer values are called contrast values and are displayed 

in the lower panel of Table 3. Note that a weight of zero in the upper panel of Table 3 has a 

different interpretation than a contrast value of zero in the lower panel of the same table; in case 

of a weight, a zero indicates the position of a group on the y-axis of the means plot, and 

therefore this value is relative to the other weight values (in our example a zero denotes the 

smallest mean), in case of a contrast value, a zero means that the group with that contrast value 

does not influence the test statistic. 

Hypotheses HA, HB and HC can be evaluated using only one contrast, as is shown in the 

lower panel of Table 3. However, HD involves equality constraints between µ2, µ3 and µ4 and, 

therefore we cannot distinguish these three groups (they have the same contrast weight, 1). Extra 

contrasts need to be added to evaluate whether or not these three group means are equal. HD 

contains three equal groups, and therefore two extra contrasts are needed: one contrast, extra 1 

(in the lower panel of the table), is for evaluating whether or not the second and third group 

means are equal, and one contrast, extra 2, is used to evaluate whether or not the second (and 

implicitly the third) and fourth group means are equal. As the null hypothesis states that the 

contrast is equal to zero, a non-significant test result is expected for both these extra contrasts 

concerning HD. Note here that it can never be concluded that H0 is correct, due to the underlying 

falsification procedure in null hypothesis testing (Cohen, 1990; Lehmann & Romano, 2005). 

Each evaluated contrast results in an Fcontrast-test statistic and corresponding one-sided p-

value. Making inferences concerning HA, HB and HC is straightforward as each hypothesis can be 

tested using one contrast. If the contrast is significant, it can be concluded that the group means 

are ordered according to the contrast weights (supporting the hypothesis), if not, the group 

means are equal. However, for HD drawing conclusions is more complicated as this hypothesis is 

evaluated using three contrasts. In order to conclude that the hypothesis is supported, all three 

contrasts need to result in the expected direction, (significant or non-significant) after correcting 

for multiple testing: contrast HD, involving the inequality constraint, needs to be significant and 

contrasts extra 1 and extra 2, involving the equality constraints, need to be non-significant. When 
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one of the three contrasts has a result opposite to the expected direction, no support is found for 

the hypothesis. 

 

Evaluating the 2x6 example 

For the evaluation of the hypotheses belonging to the 2x6 example, a data set with the descriptive 

statistics in Table 2 was used. The hypotheses stated in the introduction of Gupta et al. (2008), 

H1: µ2 < µ3 & µ8 > µ9 & µ1, µ4, µ5, µ6, µ7, µ10, µ11, µ12. 

H2: µ4 > µ5 & µ10 < µ11 & µ1, µ2, µ3, µ6, µ7, µ8, µ9, µ12. 

H3: µ1 > µ7 & µ6 = µ12 & µ2, µ3, µ4, µ5, µ8, µ9, µ10, µ11. 

are analyzed using the factorial ANOVA followed up by the pairwise comparisons approach, the 

planned contrasts approach and the Bayesian approach. A summary of the results can be found 

in Table 4, where supported hypotheses are displayed in boldface. 

- Insert Table 4 about here – 

 Equal to the analysis done by Gupta et al. (2008), a two-way ANOVA was performed, 

with condition and sex as fixed factors. This analysis was done using SPSS 16.0 statistical 

software, using the module: General linear Model - Univariate. First, consistent with their 

findings, a significant main effect for sex, F(1,457)=39.62, p<.001, and a significant interaction 

effect, F(5,457)=3.18, p<.05, were found. Second, in order to find out what the interaction effect 

looks like, post-hoc pairwise comparison tests, with Tukey's correction for multiple testing, were 

performed. Note that the pt-values displayed in Table 4 are (Tukey) corrected for multiple testing, 

therefore, the familiar α=.05 is used as decision rule. Third, to interpret the results of this post-

hoc analysis it was checked whether or not the expected results were found: for H1: µ2≠µ3 and 

µ8≠µ9, for H2: µ4≠µ5 and µ10≠µ11 and for H3: µ1≠µ7 and µ6=µ12. Only H3 was supported by the 

results of these tests. As expected there was no significant difference between µ6 and µ12 

(although actually we can only conclude that we cannot reject H0) and there was the expected 

(two-sided) significant difference between µ1 and µ7. As these tests are two-sided the descriptive 

statistics need to be consulted to see whether the difference is in the right direction; The 
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descriptive statistics in Table 2 show that they are. The rest of the expected significant differences 

between group means were not found. Using this analysis support is found only for H3. 

To analyze the data using planned contrasts SPSS 16.0 statistical software, again the 

module: General linear Model - Univariate was used. First, the contrasts need to be established. 

As the statistical hypotheses consist of two separate inequality constraint parts, for example, for 

H1: µ2<µ3 and µ8>µ9, each hypothesis was captured in two contrasts (C1 and C2). Consequently, 

for C1 of H1 we get a contrast value of -1 for µ2 and 1 for µ3 (as µ2 is smaller than µ3) and for C2 

of the same hypothesis we get a contrast value of 1 for µ8 and -1 for µ9 (as µ9 is smaller than µ8). 

Table 5 shows the contrasts values that we used to analyze the three hypotheses. 

- Insert Table 5 about here – 

Second for the hypotheses to be supported, we expect to find (one-sided) significant test results 

for both contrast of H1 and H2, and for H3 we expect the first contrast to be significant and the 

second contrast to be (two-sided) non-significant. The middle panel of Table 4 shows the (one-

sided) results of this analysis. Note that this module in SPSS 16.0 gives t-test statistics. 

Furthermore, the panel displays the contrast value C in order to be able to check whether or not 

the direction of the contrast is as expected, i.e., if C is larger than 0. For H1 both contrasts were 

significant and for both C>0 holds.  For H2 both contrasts (C1 and C2) were not significant. For 

H3 the first contrast was significant and C>0 and the second (C2) was not significant, as was 

expected. Therefore, it can be concluded that support was found in favor of H1 and H3. 

 In order to perform the Bayesian model selection method, software called BIEMS 

(downloaded from http://tinyurl.com/informativehypotheses) was used. The directional 

hypotheses H1, H2, H3 were each compared to the corresponding null-hypothesis (H0) and the 

unconstrained hypothesis (Hunc). The Posterior Model Probabilities for the sets H1, H0, Hunc, and 

H2, H0, Hunc, and H3, H0, Hunc, resulting from this analysis can be found in the lower panel of 

Table 4. Here it can be seen that all three inequality constrained hypotheses (H1, H2, H3) are more 

likely than the null-hypothesis (H0). Furthermore, for H2, the amount of support for the 

directional hypothesis (PMP2=.45) is similar to the amount of support for the unconstrained 

hypothesis (PMPunc=.55), indicating that a hypothesis without any constraints is slightly more 
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likely and therefore that the support for H2 is weak. It can be concluded that support is found in 

favor of H1 and H3. 

As the boldfaced symbols in Table 4 display, the results from the techniques that actually 

evaluate the ordering of the group means (planned contrasts and Bayesian model selection), 

indicated by the hypotheses, lead to the same conclusions. In contrasts, the technique evaluating 

non-directional hypotheses (factorial ANOVA with pairwise comparisons post-hoc tests) shows 

a different result. Note that the results of both classical methods differ due to the fact that the 

number of multiple test, and thus the correction, differs. Concerning the hypotheses by Gupta et 

al. (2008), all three methods provide evidence in support of H3. Furthermore, none of the three 

methods provide evidence for H2. Different conclusions are drawn for H1. Both the planned 

contrast method and the Bayesian method give evidence in support of this hypothesis, but the 

factorial ANOVA does not. Given these results, we would conclude that `Men report stronger 

entrepreneurial intensions when presented with an implicit versus an explicit masculine stereotype whereas women 

report stronger entrepreneurial intensions when presented with an explicit versus an implicit masculine stereotype.' 

And that `Men report stronger intentions than women in the no stereotypical information condition, but men and 

women report similar entrepreneurial intentions in the stereotype nullified condition.'. 

 

Comparing these methods 

The three methods described above have their own advantages and disadvantages. Table 6 shows 

a summary of the comparison on the following aspects: what each method tests, practicability, 

inferences and drawbacks. 

- Insert Table 6 about here – 

 The factorial ANOVA with post-hoc tests can be seen as an explorative approach, 

whereas the planned contrasts method and Bayesian method can be seen as confirmative analysis 

approaches. In an explorative approach, a specific ordering of means is not tested explicitly, 

therefore the carefully formulated hypotheses are not used to their utmost potential. Conversely, 

the planned contrast method and the Bayesian method both evaluate whether a specific 
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hypothesis, and thus ordering of the group means, is supported or not (including the relative 

effect for planned contrasts). 

Concerning practicability, the factorial ANOVA with post-hoc tests and the planned 

contrast method have an advantage over the Bayesian method as they are more familiar to most 

social scientists. Furthermore, both approaches can be performed in standard statistical software, 

as for example SPSS. In contrast, the Bayesian method is not well known and therefore not 

available in standard statistical software. Special software and tutorials for this method can be 

found on http://tinyurl.com/informativehypotheses. 

The factorial ANOVA method results in multiple F- and t-test statistics and their 

corresponding (two-sided) p-values. In order to draw conclusions from these figures with 

concern to the amount of support for the specific hypothesis, we need to turn to the descriptive 

statistics. The larger the design, the more tests need to be performed. All these test results may 

make it difficult, if not impossible, to draw straightforward conclusions (Van de Schoot et al., 

2011). The planned contrast method results in a number of F-test statistics and corresponding 

(one-sided) p-values equal to the number of formulated contrasts. When multiple contrasts are 

needed to evaluate one (directional) hypothesis, drawing straightforward conclusions can be 

difficult if some contrasts give the expected results and some do not. The Bayesian method 

results in a number of Posterior Model Probabilities equal to the number of competing 

hypotheses, where the highest PMP indicates the most likely hypothesis given the data and the 

set of hypotheses. 

The drawbacks of the factorial ANOVA approach are the most substantial since this 

approach seems inappropriate for testing directional hypotheses as the hypotheses that are of 

interest are not tested at all. In addition the capitalization on chance, due to several test being 

performed at once, should be corrected. The drawbacks of the planned contrast approach 

involve the issue that establishing the contrast values can be rather complicated because relative 

effects need to be specified on top of the hypotheses. Furthermore, for both classical methods 

problems may arise when several test needed to evaluate one hypothesis have conflicting results 
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and H0 can never be confirmed. The most important drawback of the Bayesian approach 

involves its practicability in terms of software and familiarity with the technique and its results. 

Concluding from the above, the factorial ANOVA method can best be used when a 

researcher is interested in exploring and describing the data. The planned contrast method can 

best be used when a researcher had a directional hypothesis which can be captured in one 

contrast and the Bayesian method can be used in all situations where a researcher is interested in 

(competing) directional hypotheses. 

 

Conclusions 

In this paper we investigated how hypotheses concerning interaction effects can be formulated in 

terms of (in)equality constrained hypotheses and how these hypotheses can be evaluated, for a 

2x2 and a 2x6 factorial ANOVA example. As we take the position that the expectations of 

researchers should be the starting point of developing analysis techniques, instead of the other 

way around, we proposed to formulate expectations about interaction effects by leaving out the 

factorial in the design. The sort of hypotheses we propose exist of two parts: the first part in which 

the ordering of the group (cell) means is described, and a second part in which the difference 

between differences is described. In order to establish these hypotheses, two aids for elicitation 

are proposed; means plots, which are useful when the research design is simple and all possible 

relationships between the parameters can be described, and graphic representations of 

experimental designs, which are useful when the design is more complicated and not all 

relationships between the parameters need to be specified. Furthermore, we proposed not to 

evaluate these inequality constrained hypotheses using factorial ANOVA but to evaluate them 

using planned contrasts or Bayesian model selection for (in)equality constrained hypotheses. 

Interaction effects are of interest in a large part of social science research. This being the 

case, more effort should be made to formulate expectations concerning these effects in more 

detail. In addition, a more suitable method should be used to analyze these effects. In short, 

interaction effect should be handled with greater care. 
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Table 1: Table of means with row and column effects leading to the estimates in the example 

from Rosnow and Rosenthal (1995) 

I. Design Therapist sex  

  female male  

female µ1 µ2  Patient sex 

male µ3 µ4  

II. Cell means   Row effect 

  +2 0 +1 

  -1 -1 -1 

 Column effect +0.5 -0.5 G =0 

III. Estimated cell means    

  +1.5 +0.5  

  -0.5 -1.5  

IV. Residual cell means    

  +0.5 -0.5  

  -0.5 +0.5  

Note. Estimated cell mean = G + row effect + column effect Residual mean = cell mean - 

estimated cell mean 
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Table 2: Group numbers (group), means (M), standard deviations (SD) and number of participants 

(N) in the entrepreneurial intentions example 

Condition   Masculine stereotype Feminine stereotype  

  control explicit implicit explicit implicit nullified 

men group 1 2 3 4 5 6 

 M 3.44 2.94 3.48 3.37 3.49 3.09 

 SD 1.01 1.07 1.08 1.01 0.94 1.03 

 N 38 46 36 48 41 37 

women group 7 8 9 10 11 12 

 M 2.66 2.93 2.43 2.56 2.68 2.94 

 SD 1.09 1.05 1.00 0.99 0.94 1.12 

 N 37 33 39 35 38 41 
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Table 3: Weights and contrasts for HA, HB, HC and HD 

Weights indicated by means plot 

Hypothesis Group number mean 

HA 4 3 2 1 2.50 

HB 4 2 1 0 1.75 

HC 4 0 1 2 1.75 

HD 4 1 1 1 1.75 

Weights summing up to zero 

 1 2 3 4  

HA 1.5 0.5 -0.5 -1.5 0 

HB 2.25 0.25 -0.75 -1.75 0 

HC 2.25 -1.75 -0.75 0.25 0 

HD 2.25 -0.75 -0.75 -0.75 0 

Contrasts in integer values (cj) 

 1 2 3 4  

HA 3 1 -1 -3 0 

HB 9 1 -3 -7 0 

HC 9 -7 -3 1 0 

HD 9 -3 -3 -3 0 

extra 1 0 1 -1 0  

extra 2 0 1 0 -1  
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Table 4: Results of the factorial ANOVA with pairwise comparison post-hoc tests (two-sided, 

Tukey corrected (pt-values), planned contrasts (one-sided, po-values) and Bayesian model selection 

for H1, H2 and H3 

Factorial ANOVA and post-hoc tests 

Main effect sex F(1, 457) = 39.62, p < .001 

Main effect condition F(5, 457) = 0.25, p = .94 

Interaction effect F(5, 457) = 3.18, p = .01 

 H1 H2 H3 

H0 µ2=µ3, pt=.44 µ4=µ5, pt>.999 µ1=µ7, pt=.05 

H0 µ8=µ9, pt=.65 µ10=µ11, pt>.999 µ6=µ12, pt>.999 

Planned contrasts 

 H1 H2 H3 

H0:C1=0 C1=0.54 C1=-0.12 C1=0.78 

 t(457)=2.36, po=.01 

 

t(457)=0.55, po=.29 t(457)=3.29, po<.001 

H0:C2=0 C2=0.50 C2=0.12 C2=0.15 

 t(457)=2.06, po=.02 t(457)=0.50, po=.31 t(457)=0.64, po=.26 

Bayesian model selection 

 H1 H2 H3 

PMP1;2;3 0.79 0.45 0.81 

PMP0 0.00 0.00 0.06 

PMPunc 0.21 0.55 0.13 
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Table 5: Contrasts for H1, H2 and H3 

  µ1 µ2 µ3 µ4 µ5 µ6 µ7 µ8 µ9 µ10 µ11 µ12 

H1 C1 0 -1 1 0 0 0 0 0 0 0 0 0 

 C2 0 0 0 0 0 0 0 1 -1 0 0 0 

H2 C1 0 0 0 1 -1 0 0 0 0 0 0 0 

 C2 0 0 0 0 0 0 0 0 0 -1 1 0 

H3 C1 1 0 0 0 0 0 -1 0 0 0 0 0 

 C2 0 0 0 0 0 1 0 0 0 0 0 -1 

 



Formulating and Evaluating Interaction Effects 

 

 31 

Table 6: Summary of comparison of the three methods 

Method What is tested Practicability Inferences Drawbacks 

Factorial 

ANOVA 

and post 

hoc tests 

 

Omnibus ANOVA 

testing main and 

interaction effects 

and post hoc testing 

for differences 

between all pairs 

of means or simple 

main effects 

easy to test 

in standard 

statistical 

software 

(SPSS) 

 

ANOVA F and 

corresponding p values 

for main and interaction 

effects and post hoc t 

or F and corresponding 

p-values for differences 

between means. 

Descriptive statistics 

needed to check specific 

ordering 

ANOVA does not 

evaluate directional 

hypotheses, 

capitalization on 

chance, possible 

conflicting 

multiple test 

results and equalities 

cannot be 

confirmed 

 

Planned 

contrasts 

 

testing a specific 

ordering of means, 

including the 

relative 

effects 

 

easy to test 

in standard 

statistical 

software 

(SPSS) 

 

F(or t) and 

corresponding (one-

sided) p values for each 

contrast 

 

the relative effects 

need to be 

elicited, possible 

conflicting 

multiple test 

results and equalities 

cannot be 

confirmed 

Bayesian 

Model 

selection 

 

evaluating one 

specific ordering of 

means (or multiple 

orderings) 

special soft- 

ware needed 

(BIEMS) 

Posterior model 

probabilities for each 

hypothesis in the set 

 

software and 

method are 

unfamiliar 
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Figure 1. Interaction plots for the means, estimates, and residuals in the example from Rosnow 

and Rosenthal (1995) 
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Figure 2. Means plots for the expectations of researchers A,B,C and D on the effect of therapist's 

sex and patient's sex on treatment effect 
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Figure 3. Graphic designs specifying the expectations of researcher A,B,C and D with respect to 

the effect of therapist's sex and patient's sex on treatment effect 
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Figure 4. Means plots for two possible scenarios of H1 
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Figure 5. Graphic designs for H1, H2 and H3 


