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Introduction

Advances in Bayesian methodology in recent years have resulted in a great
expansion of applications of Bayesian statistics in a wide variety of fields.
Bayesian papers now make up a substantial percentage of the papers pub-
lished in the top statistical journals. However, to understand and apply
Bayesian statistical models, a fair amount of technical knowledge is required.
In this paper, we discuss Bayesian model selection in the context of con-
tingency tables and (in)equality constrained hypotheses at a non-technical
level. The statistical background is presented in two appendices. The ap-
proach presented in this paper fits in the steadily increasing attention for
Bayesian evaluation of inequality constrained models. See, for example, Hoi-
jtink, Klugkist and Boelen, 2008; Myung, Karabatsos and Iverson (2005);
Klugkist, Laudy and Hoijtink (2005); Karabatsos and Sheu (2004).

In psychological research, theories or expectations are often expressed in
the form of expected orderings of cell probabilities. To illustrate this and
to demonstrate the translation of expectations in inequality constrained hy-
potheses we will provide two examples. Lessard and Moretti (1998) inves-
tigated the relationship between attachment patterns and suicidal ideation.
Quality of attachment was assessed using Bartholomew’s two-dimensional
model of attachment (Bartholomew, 1990), leading to the cross-tabulation
of Self Image (positive/negative), Other Image (positive/negative) and Sui-
cidal Ideation (yes/no). Expectations about these data are represented by
the following hypotheses:

H1 Respondents with a positive self image have a lower probability of sui-
cidal ideation compared to respondents with a negative self image

H2 Respondents with a positive other image have a lower probability of
suicidal ideation compared to respondents with a negative other image

H3 Both effects occur and they add up, that is, the probability of suicidal
ideation is lowest for respondents in the positive-positive cell, highest
in the negative-negative cell and moderate (in-between) in the other
two (positive-negative) cells

These expectations can be translated into hypotheses that are formulated in
terms of inequality constraints on (functions of) cell probabilities. Using the
standard notation for contingency tables with three variables with respective
indexes i = 1, ..., I, j = 1, ..., J and k = 1, ...,K, the unknown probabilities
of a response in cell i, j, k are denoted πijk. The notations used in this
example are provided in Table 1.

The first hypothesis expresses an expectation about marginal proba-
bilities since the variable Other Image is not included in H1. Therefore,
summations are made over the categories positive and negative for Other
Image. To abbreviate notation, summation over a third variable is denoted
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Table 1: Notations for the Suicidal Ideation Example

Suicidal Ideation
Self Image Other Image yes no
pos pos π111 π112

neg π121 π122

neg pos π211 π212

neg π221 π222

by a ’+’-sign in the subscripts, e.g. π1+1 = π111 + π121, for the cross classi-
fication of positive Self Image and the response yes for the variable Suicidal
Ideation. Furthermore, the hypothesis states that for positive Self Image the
probability of answering yes (i.e., π1+1/π1++) is smaller than the probability
of answering yes for negative Self Image (i.e., π2+1/π2++). Note that the
notations in the denominators are used to denote further summation over
the yes and no categories of Suicidal Ideation.

In a similar fashion, the other two hypotheses are translated into in-
equality constrained hypotheses, leading to:

H1 : π1+1

π1++
< π2+1

π2++
,

H2 : π+11

π+1+
< π+21

π+2+
,

H3 : π111
π11+

<
{

π121
π12+

, π211
π21+

}
< π221

π22+
.

The brackets in H3 are used to denote that the first term is restricted to
be smaller than both terms in the brackets, and, both terms in the brackets
are restricted to be smaller than the last term. Evaluation of these hypothe-
ses is not straightforward with standard approaches. In the discussion of
this paper the possibilities and limitations of existing classical methods will
be discussed. Especially, the mutual comparison of non-nested hypothe-
ses is problematic in a non-Bayesian framework. With the Bayesian model
selection approach presented in this paper, however, the support for each
hypothesis under consideration can be mutually compared, providing the
information which of the three hypotheses receives most support.

A second example, cross-classifies Number of Siblings with Happiness.
The notations for this example are presented in Table 2. Vermunt (1991)
investigated whether respondents with more siblings are happier. Although
not investigated in the original research, one can easily imagine a competing
hypothesis, like, for instance, an increase in Happiness up to a certain num-
ber of siblings, let’s say 5, and a decrease afterwards (i.e., ’it is nice to have
siblings but one can also have too many’). These expectations can be trans-
lated in inequality constrained hypotheses in several ways. As an example,
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Table 2: Notations for the Happiness with Siblings Example

Number of Siblings
0-1 2-3 4-5 6-7 8+

Happiness not too happy π11 π12 π13 π14 π15

pretty happy π21 π22 π23 π24 π25

very happy π31 π32 π33 π34 π35

we will present hypotheses in terms of local odds ratios. A local odds ratio
θij = (πijπi+1,j+1)/(πi+1,jπi,j+1), so, for instance, θ11 = (π11∗π22)/(π21∗π12)
and θ24 = (π24 ∗π35)/(π34 ∗π25). Under the hypothesis of Vermunt (H1), all
8 local odds ratios are expected to be larger than one (positive association
between Number of Siblings and Happiness). In the alternative hypothesis
some local odds ratios are expected to be larger, and some smaller than 1.
This leads to the following formulation of hypotheses:

H1 : {θ11, θ12, θ13, θ14, θ21, θ22, θ23, θ24} > 1,

H2 : {θ11, θ12, θ21, θ22} > 1 > {θ13, θ14, θ23, θ24}.

Again, the – non-nested – hypotheses can be mutually compared with the
Bayesian model selection approach presented in this paper.

These two examples show that expectations of researchers are often
stated in terms of inequality constraints, e.g. a set of cell probabilities – or a
function of cell probabilities, like a (local) odds ratio – is hypothesized to be
ordered. In general, hypotheses can be formulated by imposing constraints
on cell probabilities using one or more of the operators +,−, ∗, /, =, >, <
and, 0 and 1. Throughout the paper, several examples are provided and
form an illustration of the use of (combinations of) these operators to con-
strain cell probabilities according to certain theoretical expectations.

In a Bayesian framework, it is very natural to include inequality con-
straints imposed on model parameters as prior knowledge. However, also
some non-Bayesian approaches exist for order constrained hypotheses. An
overview of the developments in the classical framework is provided in the
discussion. The main limitation of these approaches is that non-nested hy-
potheses can not be mutually compared, while this is no problem using
Bayesian model selection as proposed in this paper.

In the next sections, the Bayesian model selection approach for inequality
and equality constrained hypotheses in contingency table analysis is intro-
duced using two relatively simple examples based on a 2× 2 and a 2× 2× 2
contingency table. This is followed by simulation studies, based on 2×2×2
tables, conducted to evaluate the behavior of the proposed method as well
as the sensitivity to specification of the prior distribution. This is followed
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Table 3: Cross-classification of Internal Assets and Being Sent from Class

Internal Assets Sent from Class

yes no
low 220 1060
high 96 609

by a more elaborate illustration dealing with delinquency data in a 4×4×4
table. The paper is concluded with a discussion.

Bayesian Model Selection

In this section, Bayesian model selection is introduced in four subsections.
In the first part, we will explain the basic ingredients of any Bayesian anal-
ysis: likelihood, prior and posterior. For the explanation a simple example
dealing with a 2×2 table will be used and (in)equality constraints are not yet
incorporated. The next part specifically deals with the inclusion of inequal-
ity constraints and the evaluation of constrained hypotheses. Hypotheses
containing equality constraints are discussed separately in the third sub-
section. The section is concluded with the introduction of posterior model
probabilities and their interpretation.

Likelihood, Prior and Posterior

Consider another, simple, example from Nash and Bowen (2002), for which
the data are displayed in Table 3. The research question is whether students
with low internal assets are more frequently sent from class than students
with high internal assets. Data are collected using the School Success Profile
(SSP) by Bowen, Richman, Brewster and Bowen (1998). The SSP is a
self-administered instrument designed for students in grades 6 to 12. The
internal assets index is a dichotomized composite of 10 items that assesses
the adolescent’s perception of his or her strength and resources (health,
exercises, or involvement in sports). A dichotomous measure was created
using a students response to a single SSP item asking whether, during the
previous 30 days, the student had been sent from class due to his or her
behavior.

Let fij denote the observed frequency for cell i, j. For example, in Table
3, f11 = 220. Let πij denote the unknown probabilities of a response in cell
i, j, that is, πij is the probability that an observation sampled at random
from the population of interest falls into cell i, j. Finally, let f denote the
four frequencies in Table 3 and π the four corresponding probabilities.
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The first ingredient is the likelihood of π given f for a model in which
it is assumed that the total sample size is fixed:

L(π|f) =
I∏

i=1

J∏
j=1

π
fij

ij (1)

with the restriction that
∑

i

∑
j πij = 1. The likelihood is proportional to

the density of the data with the role of data and parameters reversed. It
summarizes the information with respect to π that is available in the data.
For example, the likelihood that π11 = 220/1985 = .11, π12 = 1060/1985 =
.53, π21 = 96/1985 = .05, and π22 = 609/1985 = .31 is rather high because
the probabilities are equal to the sample probabilities (the total size of the
sample in Table 3 is 1985). The likelihood of π11 = .6, π12 = .1, π21 = .2,
and π22 = .1 is much smaller because the probabilities given are not at all
supported by the data. Stated otherwise, the likelihood tells us which values
of π are more and less supported by the data.

The second ingredient is the prior distribution. The prior distribution
summarizes the information with respect to π that is available before ob-
serving the data:

Pr(π | α,Hu) ∝
I∏

i=1

J∏
j=1

π
αij−1
ij . (2)

Note that this is the prior distribution for the unconstrained hypothesis
Hu : π11, π12, π21, π22, where the comma’s are used to denote that no con-
straints are imposed on the four cell probabilities. As can be seen the math-
ematical form of the prior distribution is equal to the mathematical form of
the likelihood. The equivalence of the mathematical form is called “conju-
gate”. Conjugate prior distributions are a common and convenient choice
because (as will be shown below) they render simple posterior distributions
that can easily be processed. As elaborated in Albert and Gupta (1983),
there are other ways to specify prior distributions for contingency tables.
However, as will be shown later in the paper, Bayesian evaluation of con-
strained hypotheses based on the conjugate prior (2) performs adequately.

The main difference between the prior distribution and the likelihood is
the use of αij instead of fij . Where fij is the observed frequency of cell
i, j, αij can be seen as the number of persons in cell i, j before observing
the data, that is, the prior information with respect to πij before observing
the data. In statistics the prior distribution (2) is known as the Dirichlet
distribution (Gelman, Carlin, Stern and Rubin, 2004, pp. 576-577). It is a
statistical convention to specify this distribution using αij − 1. A common
choice is to choose α = [1, 1, 1, 1], that is, before observing the data our
prior knowledge is equivalent to 1 person in each cell of the contingency
table. With this choice each π for which

∑
i

∑
j πij = 1 has the same prior

density Pr(π | α) ∝ 1, that is, each π is a priori equally likely. As will
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be shown in the section dealing with sensitivity, using α = 1 has good
properties if the goal is to select the best of a set of (in)equality constrained
hypotheses.

The third ingredient is the posterior distribution. It combines the infor-
mation with respect to π available in the data and the prior distribution:

P (π|f ,α,Hu) ∝
I∏

i=1

J∏
j=1

π
fij+αij−1
ij . (3)

As can be seen, the total sample size per cell is the sum of the observed
frequencies fij and the prior frequencies αij . The higher the value of P (π|f)
the more the information in the data combined with the prior information
support the value of π at hand. The posterior distribution (3) illustrates two
of the features that distinguishes Bayesian analyses from classical analyses:
the use of prior information, and, the fact that π is considered to be random.

The focus of this paper is on selection of the best of a set of constrained
hypotheses, hence, parameter estimates and confidence intervals will not
be presented. However, they are easily obtained from a sample from the
posterior distribution (Hoijtink, 2000).

Inequality Constrained Hypotheses

In the previous section we introduced the use of the conjugate prior contain-
ing hardly any prior information (by setting α = 1) and an equal amount
of prior support for each cell (since α11 = . . . , = αIJ for all i, j). So far,
no constraints have been imposed on the model parameters and therefore
this prior distribution is called the unconstrained, or also, the encompassing
prior. This is the prior used for what we call the unconstrained hypothesis
or unconstrained model Hu : π11, π12, π21, π22.

Nash and Bowen (2002) hypothesized that students with low internal
assets are more frequently sent from class than students with high internal
assets. This expectation can be formalized by the inequality constrained
hypothesis: H1 : π11/(π11 +π12) > π21/(π21 +π22). Imposing the inequality
constraints on (a function of) the cell probabilities πij allows researchers
to test hypotheses in a format that is directly related to the data. It is
also common to think about cross-classified data in terms of odds ratios,
where the odds ratio θ = (π11 ∗ π22)/(π12 ∗ π21) can be used to specify, for
instance, the expectation of a positive association in a 2 × 2 table, that is:
H1 : θ > 1. Note that an odds ratio is also a function of cell probabilities. In
the remainder of the paper both notations (odds ratios and cell probabilities)
will be used for the formulation of hypotheses. In the software provided with
this paper one always has to formulate hypotheses in terms of (functions of)
cell probabilities.

At this point, it is important to stress that this 2× 2 illustration is too
small to demonstrate the benefits and flexibility of the Bayesian approach,
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since for such a simple example and the constrained hypothesis H1 also other,
classical, approaches could be used. It is included, however, to explain the
Bayesian procedure in a simple set-up. In the sections that follow, more
elaborate examples will be provided, dealing with 2 × 2 × 2 and 4 × 4 × 4
contingency tables. In the discussion of this paper an overview of alternative
methods for constrained contingency tables is provided.

Bayesian model selection requires a prior parameter distribution under
each model. For inequality constrained hypotheses we use the fact that a
hypothesis formulated using inequality constraints is nested in the uncon-
strained model. Compared to the unconstrained model Hu, hypothesis H1

puts additional, a priori, information on the four model parameters. The
assumed ordering is incorporated in the prior distribution Pr(π|α,Hu) by
truncation of the parameter space, that is, parts that are not in agreement
with the constraints of the hypothesis are given a prior density of zero. This
leads to the prior

Pr(π|α,Ht) =
Pr(π|α,Hu)IHt∫
Pr(π|α,Hu)IHtdπ

, (4)

for any inequality constrained hypothesis Ht. The indicator function IHt

equals one if π is in agreement with the constraints, and zero otherwise.
This shows that the prior distribution of the constrained hypothesis has
the same shape as the unconstrained prior (i.e., it is proportional) in the
area in agreement with the constraints. The denominator is required to
make the constrained prior a proper density function that integrates to one.
Stated differently, the integral is the normalizing constant that is required
to compensate for the part that is truncated (i.e., where the density is set
to zero according to the inequality constraints).

In a similar fashion, the resulting posterior distribution of a constrained
hypothesis Ht is proportional to the unconstrained posterior for parameter
values in agreement with Ht and zero otherwise. Again, a normalizing con-
stant is required to compensate for the truncated part of the unconstrained
posterior, leading to:

P (π|f ,α,Ht) =
P (π|f ,α,Hu)IHt∫
P (π|f ,α,Hu)IHtdπ

. (5)

The two normalizing constants play an important role in the model selection
procedure and will from now on be denoted ct and dt for prior and posterior,
respectively.

To evaluate inequality constrained hypotheses, the Bayesian model selec-
tion criterion used is the Bayes factor (Kass, 1993; Kass and Raftery, 1995).
A Bayes factor is the ratio of two marginal likelihoods, where the marginal
likelihood of a hypothesis is a Bayesian measure of the degree of support in
the data for that hypothesis. The term marginal is used because it is the
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likelihood of the data integrated over the prior distribution, that is:

m(f |H) =
∫

L(π|f)Pr(π|α,H)dπ,

for any hypothesis H. For a general comprehensive introduction to Bayesian
statistics including Bayesian model selection, we refer to Congdon (2001) and
Lee (1997). For estimation of the marginal likelihood, see also, for instance,
Chib, 1995; Gelfand and Smith, 1990; Verdinelli and Wasserman, 1995.

For the evaluation of inequality constrained hypotheses, however, we use
an alternative formulation of the marginal likelihood (Chib, 1995):

m(f |H) = L(π|f)Pr(π|α,H)/P (π|f ,α,H).

Using this notation, the Bayes factor of any inequality constrained hypoth-
esis Ht with the unconstrained Hu can be written as:

BFtu =
L(π|f)Pr(π|α,Ht)/P (π|f ,α,Ht)
L(π|f)Pr(π|α,Hu)/P (π|f ,α,Hu)

=
ct

dt
. (6)

Due tot he nesting of Ht in Hu and the previously presented formulation of
prior parameter distributions as truncated versions of the prior for Hu, this
equation can be simplified into the ratio of the two normalizing constants
ct and dt: For any value π∗ that belongs to Ht, the likelihood terms cancel,
and the priors and posteriors cancel up to the two normalizing constants.
This can be seen by inserting (4) and (5) in (6); a more formal derivation is
provided in Appendix A (and see also Hoijtink, Klugkist and Boelen, 2008;
Klugkist, Kato and Hoijtink, 2005).

To get an estimate of BFtu, all that is needed are estimates of ct and dt.
Since the normalizing constants are needed to compensate for the truncated
part of prior and posterior distribution, they are the inverse of the propor-
tions that are truncated. If, for instance, 50% of the unconstrained prior
distribution is not in agreement with the constraints of a hypothesis Ht–
and the density in this area thus set to zero in the constrained prior – the
prior density in the remaining area must be multiplied by 2, that is, ct = 2.
Stated differently, the proportion of the unconstrained prior in agreement
with the constraints of Ht provides the value c−1

t . Similarly, the proportion
of the unconstrained posterior in agreement with the inequality constraints
is equal to d−1

t . These two proportions are easily estimated by sampling
from both unconstrained prior and posterior and counting the number of
iterations in agreement with Ht. The sampling procedure is not elaborated
here but can be found in Appendix B.

Equality Constrained Hypotheses

For models formulated using equality constraints, c−1
t and d−1

t can not be
interpreted as the respective proportions of the unconstrained prior and pos-
terior distribution in agreement with the constraints, because there is a zero
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probability that two or more probabilities πij are exactly equal. However,
as elaborated in Dickey (1971), Gunel and Dickey (1974) and Verdinelli and
Wasserman (1995), the Bayes factor for an equality constrained versus un-
constrained hypothesis is still a ratio of a posterior and a prior component.
Considering a simple equality hypothesis stating H1 : θ = 1, the Bayes
factor comparing H1 with a hypothesis without any constraint on θ (de-
noted as, Hu : θ), is the ratio of the posterior and prior density evaluated
at θ = 1 in the unconstrained posterior and prior distribution, respectively.
The interested reader is referred to the last paragraph of Appendix A for
the derivation of this result.

Our approach to equality constrained hypotheses is based on an approxi-
mating hypothesis, where equality constraints are replaced by about equality
constraints. For instance, H1 is approximated by H1∗ : θ ≈ 1, evaluated
using H1∗ : |θ − 1| < δ0 for a small value δ0. According to Berger and De-
lampady (1987) a Bayes factor based on θ = 1 is indistinguishable from the
Bayes factor based on |θ − 1| < δ0 if δ0 is small enough. With this approxi-
mate hypothesis the dimension of the unconstrained hypothesis is preserved
and therefore d−1

t and c−1
t can again be interpreted as the proportions of

the unconstrained posterior and prior in agreement with the constraints of
the hypothesis.

Estimation of these proportions based on samples from unconstrained
prior and posterior will, however, be inefficient if δ0 is close to zero. There-
fore, a stepwise procedure is used that starts with a larger value for δ and
a stepwise decrease of this value until the desired δ0 is obtained. Adopting
this approach requires several steps in the sampling scheme as well as con-
strained sampling. All technical details are provided in Appendices A and
B.

With a limited number of steps, we can let δ0 → 0, providing a very good
approximation of the strict equality constraint. Note that other approaches
exist that can handle hypotheses specified using equality constraints (see,
for example, Verdinelli and Wasserman, 1995). However, ours is currently
the only unified approach that can handle hypotheses specified using both
inequality and equality constraints, and therefore also hypotheses that con-
tain a mix of equality and inequality constraints. The simulation studies
presented later in this paper will furthermore show that the performance of
our approach is good.

Bayes Factors and Posterior Model Probabilities

The Bayes factor is a model selection criterion that combines fit and com-
plexity, that is, it functions as an automatic Ockham’s razor. This means
that if two hypotheses fit the data equally well, the ’smallest’ hypothesis
receives more support, where, in this context, smallest refers to the hypoth-
esis with the smallest non-zero density parameter space. Since the value
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Table 4: Hypotheses and Results for the Nash and Bowen Data

Hypothesis BFtu

H1 : π11/(π11 + π12) > π21/(π21 + π22) 1.96
H2 : π11/(π11 + π12) = π21/(π21 + π22) 2.59
Hu : π11, π12, π21, π22

c−1
t reflects the part of the unconstrained prior parameter space that is in

agreement with the constraints of Ht, it can be interpreted as the size or
complexity of the constrained hypothesis. Since the posterior support for
Ht, measured by d−1

t , takes the observed data into account it can be inter-
preted as a measure of fit. As we saw in (6), the Bayes factor comparing a
constrained with the unconstrained hypothesis is the ratio of fit (d−1

t ) and
complexity (c−1

t ).
As an example, consider H1 : θ1 > θ2 versus the hypothesis without

constraints Hu : θ1, θ2, where θ1 and θ2 represent two odds ratios, and the
Bayes factor BF1u. The value of c−1

1 = .5 since half of the parameter space
(θ1, θ2) has non-zero density under H1. For two sample odds ratios (OR)
that are equal, exactly half of the posterior will fall in the area θ1 > θ2.
In this case, there is no support for H1 but also no clear evidence against
it. This is correctly represented by the resulting Bayes factor: since both
c−1
1 and d−1

1 are .5, we obtain BF1u = 1. For sample odds ratios that are
not in agreement with H1 (i.e., OR1<OR2, where OR1 and OR2 denote
the observed odds ratios in the sample) less than half of the unconstrained
posterior will fall in the area of Ht leading to BF1u < 1. On the other
hand, for a sample with OR1>OR2 the fit d−1

1 will be larger than .5 and
the resulting BF1u > 1. The larger the difference between OR1 and OR2,
the larger the part of the unconstrained posterior that falls in the H1 area,
resulting in larger values for d−1

1 and BF1u. This appropriate behavior of the
Bayes factor will be further demonstrated in the simulation studies presented
in the remainder of this paper.

For the Nash and Bowen data presented in Table 3, two hypotheses are
evaluated. The first (H1) states that children with low internal assets are
more frequently sent from class than children with high assets, whereas H2

states that there is no difference between the two groups. In Table 4, each
hypothesis is formulated in terms of constrained cell probabilities and the
resulting Bayes factors, BF1u and BF2u, are presented. The results show
that H1 is 1.96 times as likely as Hu, for H2 this value is 2.59. A direct
comparison of H1 with H2 can be made using:

BFtt′ =
BFtu

BFt′u
. (7)
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This results in BF21 = 2.59/1.96 = 1.32, that is, after observing the data
and accounting for both fit and complexity, H2 is 1.32 times as likely as H1.

A set of Bayes factors can also be translated into posterior model prob-
abilities which are numbers on a 0 – 1 scale and provide a measure of the
relative support for each hypothesis in a set of two or more hypotheses (see,
for example, Lee (1997, pp. 117-138), Kass and Raftery (1995) and Congdon
(2002, pp. 469-472)). If it is assumed that a priori each of the hypotheses
under investigation is equally likely, the information contained in a set of
posterior probabilities is equal to the information in the corresponding set
of Bayes factors. If the set of hypotheses of interest consists of the uncon-
strained model Hu and several alternative hypotheses Ht (t = 1, . . . , T ), the
posterior probabilities are computed using:

PHt =
BFtu

1 + BF1u + . . . + BFTu
. (8)

For the three hypotheses in our small example, the posterior probabilities
are PH1 = .35, PH2 = .47, and PHu = .18. As can be seen H2 has a higher
posterior model probability than H1. However, the evidence in favor of H2

is not such that H1 can be disqualified. Both hypotheses are supported more
than Hu, but a definite choice between both hypotheses would be premature.
Stated otherwise, after observing the data it is still unclear whether or not
there is a positive association between internal assets and being sent from
class.

Two important issues remain. First, are the results sensitive to the choice
of the prior distribution? Second, how precise are the sampling based esti-
mates? Prior sensitivity will be investigated in a separate section. Sampling
errors are addressed here and in Table 5.

The sampling error in the estimates of ct, dt and subsequent Bayes factors
can be controlled by taking large samples from the prior and posterior dis-
tribution, respectively (see Appendix B for the sampling procedure). Table
5 shows the Bayes factors and posterior model probabilities obtained after
three runs of our software. As can be seen, with a sample size of 10,000
from prior and posterior for each step in the analysis (see (18) in Appendix
A where the step-wise computation of Bayes factors is elaborated) the sam-
pling error in the resulting Bayes factors and posterior model probabilities
is negligible for all practical purposes. A similar table presenting three dif-
ferent runs will also be presented in the other examples in this paper.

An Extension of the Nash and Bowen Example

Another research interest of Nash and Bowen (2002) is whether the rela-
tion between Internal Assets and Sent from Class differs between males and
females. Table 6 displays the data. Note that summing over gender gives
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Table 5: Investigation of Sampling Error

Run 1 Run 2 Run 3
BFtu PHt

BFtu PHt
BFtu PHt

H1 1.96 .35 1.97 .34 1.97 .35
H2 2.59 .47 2.87 .49 2.70 .48
Hu .18 .17 .18

Table 6: Cross-classification of Internal Assets and Being Sent from Class
by Gender

Gender Internal Assets Sent from Class
yes no

female low 79 629
high 18 323

male low 141 431
high 78 286

Table 3. To abbreviate notation, in this example the hypotheses are for-
mulated in terms of odds ratios instead of cell probabilities: θf denotes the
relation between Internal Assets and Sent from Class for females, θm for
males. A positive relationship is represented by an odds ratio with a value
larger than one. The observed odds ratios are 2.25 and 1.19 for females and
males respectively. This means that for both females and males there is
a positive relationship between Internal Assets and Sent from Class in the
sample.

The hypotheses that will be investigated are presented in Table 7. Note
that we do not include all possible combinations of (in)equality constrained
hypotheses in the set, but rather follow an approach where the researcher
is invited to provide well-considered hypotheses. These hypotheses may be
combinations of theory driven predictions, personal reflection and hypothe-
ses from peer researchers with opposite theories about the data. The hy-
pothesis Hu is included not because it is so interesting in itself, but because
it provides a benchmark for the constrained hypotheses: if a constrained hy-
pothesis receives less support than the unconstrained hypotheses, the con-
straints are not supported by the data.

Table 7 displays the BFtu for each hypothesis under investigation com-
puted using α = 1. Like for the previous example (see Table 5) repeated
runs of our software show that the sampling error with a sample size of
10,000 for each step is negligible for all practical purposes. For H1 and
H2 the Bayes factor is smaller than 1. This implies that the constraints in
both hypotheses are not supported by the data. For H3, H4 and H5 the
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Bayes factor is larger than 1. As can be seen H5 has the largest posterior
model probability (.50), stated otherwise, the expectation that the relation
between Internal Assets and Sent from Class is stronger for girls than for
boys and positive for both gender groups is supported most by the data.

In the next two sections the format of this example will be used in several
simulations, in which the behavior of posterior model probabilities, and, the
sensitivity with respect to the specification of the prior distribution will be
investigated.

Behavior of the Posterior Model Probability

In this section the effect of sample size and size of the odds ratio on the
posterior model probability is explored for the format of the data in Table
6. This provides some insight into the behavior of the posterior model prob-
ability when the goal is to select the best of a set of constrained hypotheses.
In this section we will again use α = 1, in the next section this choice will
be motivated.

To explore the behavior of the posterior model probability for various
sample sizes and odds ratios, data are constructed as follows. For a specific
sample size, say 40, the first data set is constructed to have an odds ratio
of exactly 1 for groups 1 and 2. As can be seen in Table 8 this implies
that each of the eight cells contains a frequency of 5. The odds ratios θ1

and θ2 for C=1 and C=2, respectively are defined as π111π221/(π211π121)
and π112π222/(π212π122). To increase the difference between the two odds
ratios in the next data set, for C=2, the diagonal cells are increased with
1 and the off-diagonal cells are decreased with 1. In the next data set,
the diagonal cells are again increased with 1, and the off-diagonal cell are
decreased with 1, etc. The resulting sequence of tables is displayed in Table
8. Following a similar procedure, a sequence of odds ratios smaller than 1
can be constructed via a stepwise subtraction of 1 from the diagonal cells
and addition of 1 to the off-diagonal cells. Note that this sequence is not

Table 7: Hypotheses and Results for the Extended Nash and Bowen Example

Run 1 Run 2 Run 3
BFtu PHt

BFtu PHt
BFtu PHt

H1: θf = θm = 1 .39 .03 .56 .04 .42 .03
H2: θf = θm .24 .02 .20 .01 .26 .01
H3: θf > 1,θm > 1 3.29 .24 3.44 .24 3.45 .25
H4: θf > θm 1.98 .14 1.94 .14 1.97 .14
H5: θf > θm > 1 6.81 .50 6.96 .49 6.66 .48
Hu: θf , θm .07 .07 .07
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presented in Table 8. This procedure is followed for sample size 40, 80, 200,
400, 800 and 4000. For the larger sample sizes, the (off) diagonal steps
are changed as indicated between brackets 40(1), 80(5), 200(10), 400(25),
800(50) 4000(100).

For each constructed data set, the hypothesis H1 : θ1 = θ2 is tested
against Hu : θ1, θ2. The results are displayed in the first plot in Figure 1.
The odds ratio for group 1 is 1, the odds ratio for group 2 is displayed on the
x-axis. Note that the figure for the sequence of odds ratios smaller than one
is the mirror image of the top plot in Figure 1, that is, the posterior model
probabilities for H1 with θ2 ∈ 1, 2.25, 5.44, . . . , 16 are identical to those for
H1 with θ2 ∈ 1/1, 1/2.25, 1/5.44, . . . , 1/16.

The figure shows that for θ1 = θ2 = 1 (i.e., H1 is true) the posterior
model probability of H1 increases with increasing sample size. For θ1 6=
θ2 two things can be observed. First of all, for each sample size it holds
that the larger the difference between θ1 and θ2 the smaller the posterior
model probability of H1. Secondly, the larger the sample size, the faster the
posterior probability of H1 decreases with an increasing difference between
θ1 and θ2.

For the same constructed data sets, in the plot at the bottom of Figure 1,
the hypothesis H3 : θ1 > θ2 is compared with Hu : θ1, θ2. As can be seen,
the larger θ2 the smaller the posterior model probability of H3 : θ1 > θ2.
Furthermore, for θ2 larger than θ1 = 1 (which is not predicted by H3) it
holds that the larger the sample size, the smaller the posterior probability
of H3. For θ2 smaller than θ1 = 1 (which is predicted by H3) it holds that
the larger the sample size, the larger the posterior probability of H3. These
are all sensible properties and support the usefulness of posterior model
probabilities for the selection of the best of a set of constrained hypotheses.

Table 8: Constructed Data for a 2× 2× 2 Contingency Table and N = 40

B B B B
C A 1 2 1 2 1 2 1 2
1 1 5 5 5 5 5 5 · · · 5 5

2 5 5 5 5 5 5 · · · 5 5
2 1 5 5 6 4 7 3 · · · 9 1

2 5 5 4 6 3 7 · · · 1 9
θ1 1 1 1 · · · 1
θ2 1 2.25 5.44 · · · 16
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Sensitivity to the Prior

In all previous analyses the prior distribution of π was specified using α = 1.
This corresponds to assuming that a-priori (i.e. before observing the data)
there is one observation or person in each cell of the contingency table. This
implies that a-priori each combination of values of π that sum to 1.0 is
equally likely. It is possible to specify other values for α. Values larger than
1 imply that a-priori values for the elements of π centered around 1/IJK are
considered to be more likely, values smaller than 1 imply that the a-priori
most likely values are not centered around 1/IJK.

Sensitivity of the posterior model probabilities to the specification of
the prior distribution will be demonstrated using the same setup as in the
previous section. First of all, prior sensitivity is investigated for H1 : θ1 = θ2

versus Hu : θ1, θ2.
Figure 2 displays the results for a sample size of N = 40 (top) and 800

(bottom). Note that the line associated with α = 1 is the same as in the first
plot of Figure 1. As can be seen the posterior model probability depends
on the choice of α. What is clear from this figure is that values of α smaller
than 1.0 lead to posterior model probabilities that are too small if H1 is
true, that is, if the odds ratio in group 2 is equal to 1. What can also be
seen is that the lines for values of α of 1 and larger are relatively close to
each other.

In Figure 3, the sensitivity of the posterior model probability of H3 :
θ2 > θ1 versus Hu : θ1, θ2 is evaluated for both N = 40 and N = 800.
As can be seen the sensitivity of the posterior model probability for the
inequality constrained hypothesis to the choice of α is negligible. Note that
for N = 800 the lines for the five different α values are on top of each other,
for N = 40 the lines are very close.

For two reasons we recommend to use α = 1. As is illustrated by Figure
2, α = 1 has a nice trade of in size between the situation in which H1 is true
(in which case it should be relatively large) and the situation in which H1

is not true (in which case it should be relatively small). The choice between
α-values of 1 and larger is relatively arbitrary because the differences in
performance are rather small. Values of α smaller than 1 lead to a rather
weak performance if H1 is true (the posterior model probabilities are too
small). Furthermore, the value 1 is preferred because it is the largest value
of α for which a so called reference prior is obtained (Lee, 1997, pp. 83-86).
A nice property of reference priors is that they are uninformative in the
sense that they express no preference for specific combinations of values of
π.

To further illustrate prior sensitivity we will repeat the evaluation of the
hypotheses stated for the data in the 2× 2× 2 table form Nash and Bowen
displayed in Table 7 for three different values of α. The results are presented
in Table 9. As can be seen, there are small differences in posterior model
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Table 9: Sensitivity of Posterior Model Probabilities

Hypothesis α = .5 α = 1 α = 2
H0: θ1 = θ2 = 1 .08 .03 .03
H1: θ1 = θ2 .00 .02 .03
H2: θ1 > 1,θ2 > 1 .23 .24 .24
H3: θ1 > θ2 .14 .14 .14
H4: θ1 > θ2 > 1 .48 .50 .49
Hu: θ1,θ2 .07 .07 .07

probabilities for the hypotheses involving equality constraints, and hardly
any differences for the hypotheses involving inequality constraints. This is a
rather common phenomenon: although there may be differences in posterior
model probabilities due to sensitivity to the prior, these differences are often
small and not of influence on the interpretation of the results. Whatever
value of α would be chosen from Table 9, the conclusion would be the same:
H4 is supported most by the data.

Illustration: The Effect of Prior Dispositions on
Current Disposition for Young Delinquents

In this section an example concerning a 4 × 4 × 4 contingency table will
be elaborated. In addition to the unconstrained hypothesis, two competing
hypotheses will be translated into constraints on sums of cell probabilities.
Subsequently, the best of the hypotheses will be selected.

Matarazzo, Carrington and Hiscott (2001) investigate the effect of prior
dispositions on the current disposition of young delinquents. Their study
uses data from the Canadian youth court survey in 1993-1994. The unit of
analysis is the “case” which is operationalized as all the charges pertaining
to an offender which were disposed of (sentenced) at the same court hearing.
In order to study the effect of prior dispositions, the data were limited to
the 16,636 cases involving young offenders with at least two previous cases
that reached disposition. The data are displayed in Table 10.

Throughout this section, we will label the three dispositions “First”,
“Second” and “Third” to denote the chronological order of the three dis-
positions under consideration. It should be noted, however, that the label
“First” does not imply that it was the offenders first disposition. “Second
disposition” was defined as the most serious disposition in the case with
the most recent date of disposition before the date of the third disposition.
“First disposition” was defined as the most serious disposition in the case
with the most recent date of disposition before the date of second disposi-
tion.

17



Table 10: Cross-classification of Three Subsequent Dispositions

Third disposition
Other Probation Open Secure

First disposition Second disposition
Other Other 373 294 100 106
Probation 427 507 239 191
Open 75 74 74 80
Secure 55 58 48 101
Other Probation 379 496 242 168
Probation 612 1399 814 499
Open 87 168 167 171
Secure 77 127 90 172
Other Open 72 109 168 138
Probation 177 356 696 421
Open 103 207 537 473
Secure 42 82 183 311
Other Secure 62 78 51 174
Probation 122 220 205 442
Open 85 145 269 576
Secure 125 195 269 1074

There are four types of disposition: Other, a residual category of dis-
positions including a fine not exceeding $1000, community service order,
order for compensation or restitution; Probation; Open custody; and, Se-
cure custody. A small number (94) of youth court cases involving very se-
rious charges and/or lengthy criminal histories were transferred to ordinary
(adult) criminal court and are excluded from this study.

Much research has been done to investigate different mechanisms un-
derlying judicial decision-making in youth court. Matarazzo et al. (2001)
further investigate some contradictory results on the relationships between
prior and current youth court dispositions. According to the societal-reaction
theory, assessments such as dispositions are a type of labelling and any prior
label, like a prior disposition, will strongly affect future assessments. This
is also referred to as the stabilization theory. One of the specifications of
this stabilization theory investigated in the paper is: ’Current youth court
dispositions are dependent upon all prior dispositions as opposed to only
the most recent prior disposition.’ (Matarazzo et al., 2001). This hypothe-
sis inspired us to formulate two inequality constrained hypotheses. We will
evaluate and compare: H1 : the second disposition is often similar to the
third disposition, and H2 : the first disposition is often similar to the third
disposition. According to Matarazzo’s expectation support should be found
for both H1 and H2.

To clarify the hypotheses, two new tables are constructed. Table 10 is in-
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Table 11: Turnover Tables for the Data in Table 10

Third disposition
Other Probation Open Secure

Second Disposition
Other .33 .33 .16 .17
Probation .20 .39 .23 .18
Open .10 .19 .39 .33
Custody .10 .16 .19 .55

First Disposition
Other .29 .32 .19 .19
Probation .18 .34 .27 .21
Open .11 .18 .32 .40
Custody .10 .15 .20 .55

dexed by i, j, k, where i indexes the first disposition, j the second disposition
and k the third disposition. The upper half of Table 11 displays the data
summed over the first disposition, and normalized such that the row sum
equals 1. The hypothesis H1 states that the second disposition is likely to
be similar to the third disposition. This implies that the diagonal probabil-
ities are larger than the probabilities in the corresponding row and column.
This is formalized in Table 12 in hypothesis H1. Note that π+11 =

∑
i πi11,

and that π+1+ =
∑

i

∑
k πi1k, etc. In the lower half of Table 11, the data

are summed over the second disposition and normalized such that the row
sum equals 1. The hypothesis H2 states that the first disposition is similar
to the third disposition. In terms of probabilities this means that all the
diagonal probabilities are restricted to be larger than the probabilities in
the corresponding row and column. This is again formalized in Table 12.

The results are displayed in Table 13 for three different runs of our
software (with α = 1) to illustrate the effect of sampling to estimate ct

and dt for t = 1, 2. As can be seen, the effect of sampling is negligible
for all practical purposes. The hypothesis that the second disposition is
similar to the third disposition is strongly supported by the data (posterior
model probability of .993). However, no support is found for the hypothesis
stating that the first disposition is similar to the third disposition (posterior
model probability of .000). Two conclusions can be drawn: The stabilization
hypothesis is supported when the most recent prior disposition is considered.
However, the hypothesis of Matarazzo et al. that all prior dispositions have
this ’stabilization’ effect is not supported.
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Table 12: Hypotheses for the Data in Table 10

Hu : Unconstrained
H1 : π+11/π+1+ > π+1k/π+1+, k 6= 1

π+11/π+1+ > π+j1/π+j+, j 6= 1
π+11/π+1+ > π+1k/π+1+, k 6= 2
π+11/π+1+ > π+j1/π+j+, j 6= 2
π+11/π+1+ > π+1k/π+1+, k 6= 3
π+11/π+1+ > π+j1/π+j+, j 6= 3
π+11/π+1+ > π+1k/π+1+, k 6= 4
π+11/π+1+ > π+j1/π+j+, j 6= 4

H2 : π1+1/π1++ > π1+k/π1++, k 6= 1
π1+1/π1++ > πi+1/πi++, i 6= 1
π2+2/π2++ > π1+k/π1++, k 6= 2
π2+2/π2++ > πi+1/πi++, i 6= 2
π3+3/π3++ > π1+k/π1++, k 6= 3
π3+3/π3++ > πi+1/πi++, i 6= 3
π4+4/π4++ > π1+k/π1++, k 6= 4
π4+4/π4++ > πi+1/πi++, i 6= 4

Table 13: Bayes Factors and Posterior Model Probabilities for the Hypothe-
ses in Table 12

Run 1 Run 2 Run 3
BFtu Post. Prob BFtu Post. Prob BFtu Post. Prob

H1 150.19 .993 153.02 .993 154.61 .994
H2 0.00 .000 0.00 .000 0.00 .000
Hu .007 .007 .006

Discussion

This paper presented a Bayesian approach that can be used to select the best
of a set of (in)equality constrained hypotheses formulated in terms of the
cell probabilities of a contingency table. Posterior model probabilities were
used to quantify the support in the data for each of the hypotheses under
investigation. It was illustrated that posterior model probabilities behave
adequately when the goal is to select the best of a set of constrained hy-
potheses. Bayesian analysis can be sensitive to the specification of the prior
distribution. It was illustrated that the sensitivity is almost non-existent
if hypotheses formulated using inequality constraints are evaluated. It was
also argued that use of a prior distribution with α = 1 has good properties
for the evaluation of hypotheses specified using equality constraints.

The analyses described in this paper can be executed using software that
can be downloaded from the website of this journal. The input for the soft-
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ware consists of a file containing the number of observations in each cell of
the contingency table, and, a file in which the restrictions for one or more
hypotheses are specified. Running the program will render an output file
containing the Bayes factors and posterior model probabilities of the hy-
potheses under investigation. The software comes with a small manual, and
example input and output files that correspond with the examples presented
in this paper. As illustrated in this paper, contingency tables consisting of
4 until 64 cells can be handled by this software package. Beyond that there
is currently no experience.

The Bayesian approach is not the only option for researchers who want
to evaluate a set of hypotheses formulated using equality and inequality
constraints. A number of alternatives is shortly discussed.

An overview of hypothesis testing using p-values when either the null
or the alternative hypothesis is specified using inequality constraints can be
found in Silvapulle and Sen (2005). Their work is an update and extension
of the work described in Barlow, Bartholomew, Bremner and Brunk (1972)
and Robertson, Wright and Dykstra (1988). Consider again the hypotheses
displayed in Table 12. What can be done with hypothesis testing is test H1

(which then serves as the null-hypothesis) against Hu, and test H2 against
Hu. If the null-hypothesis is not rejected the data support the constraints
used to formulate the null-hypothesis. Two issues have to be kept in mind
when using null-hypothesis testing: the sample size should be large enough
to have sufficient power to reject the null if it is false; and, both of H1 and
H2 can be evaluated using null-hypothesis testing, but a direct comparison
of both is not possible.

Let H0 denote the counterpart of H1 in which the inequality constraints
are replaced by equality constraints. Hypothesis testing using p-values can
also be used to test H0 against H1. The same holds for H2 if H0 is con-
structed replacing the inequalities in H2 by equalities. The same issues
discussed above apply to this setup in which H1 and H2 are the alterna-
tive hypotheses. Note that the use of information criteria like AIC (Akaike,
1974) and BIC (Kass and Raftery, 1995) is not an alternative for the fact
that null hypothesis significance testing can’t be used for a direct compari-
son of H1 and H2. Both approaches require the number of parameters in a
model in order to compute the penalty for model complexity. As to yet is is
unclear how to quantify the number of parameters in hypotheses specified
using inequality constraints.

Gallindo-Garre and Vermunt (2002, 2005) discuss inequality constrained
log-linear models. Instead of formulating hypotheses in terms of the cell
probabilities of a contingency table, they formulate hypotheses in terms of
log-linear parameters. The hypotheses that can be tested are partly different
and partly overlapping with the hypotheses that can be tested with the
approach of Silvapulle and Sen (2005). Here too, two non-nested hypotheses
like H1 and H2 cannot directly be compared to each other.
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There are two other approaches that can also be used to superimpose
a structure on the cell probabilities π. The first approach is the class of
so-called row-column (RC) association models (Agresti, Chuang and Ke-
zouh, 1987; Becker, 1989; Anderson, 1996; Gallindo-Garre and Vermunt,
2004; Iliopoulos, Kateri and Ntzoufras, 2007). These models can be used
to superimpose different ordinal association structures on contingency ta-
bles and to estimate and test the resulting models. The second approach
enables a researcher to specify models by means of linear restrictions on the
cell probabilities or the logarithm of the cell probabilities (Grizzle, Starmer
and Koch (1969), Haber (1985), Haber and Brown (1986)), and to estimate
and test the resulting models. Both approaches are interesting in their own
right, but can’t be used to evaluate hypotheses formulated using inequality
constraints. This will be elaborate using three examples.

A core feature of RC-association models for two way tables is that the
log odds ratio log θij for rows i, i+1 and columns j, j +1 is restricted using

log θij = β(ri+1 − ri)(cj+1 − cj), (9)

where the category parameters r and c are estimated from the data, and β
is a association parameter that holds uniformly throughout the contingency
table. If ri+1−ri = 1 for i = 1, . . . , I−1 and cj+1−cj = 1 for j = 1, . . . , J−1,
a so-called linear by linear association model is obtained in which β is the log
odds ratio that holds uniformly throughout the contingency table (Agresti,
1984, pp. 76-87, 139-141). The hypothesis H0 : log θ11 = log θ12 = log θ13,
with respect to three adjacent odds-ratios in a 2 by 4 contingency table,
can without problems be evaluated against Hu : “not H0” using a linear
by linear association model. However, as far as the authors know, it is
not possible to evaluate the hypotheses H1 : log θ1 > log θ2 > log θ3, H2 :
log θ1 > 0, log θ2 > 0, log θ3 > 0 or the combination of both hypotheses
using linear by linear or RC-association models. Note that models using
linear restrictions on the logarithm of the cell probabilities (Haber, 1985)
can also be used to evaluate H0. However, provisions for the evaluation of
H1, H2 or the combination of both, are lacking here too.

Consider also the hypothesis π1 > π2 > π3 > π4 for a 1 by 4 contingency
table, and the hypothesis π11

(π11+π12) > π21
(π21+π22) > π31

(π31+π32) > π41
(π41+π42) for a 2

by 4 contingency table. Both can be evaluated using the approach described
in Silvapulle and Sen (2005) and the approach proposed in this paper, how-
ever both hypotheses do not fit in the frame work of RC-association models
and can’t be evaluated using the approach described in Haber (1985) and
Haber and Brown (1986).

Note finally, that both hypotheses in Table 12 can be reformulated as
eight odds ratios that are restricted to be larger than one. Evaluation of one
odds ratio that is restricted to be larger than one can be achieved using a
one sided null hypothesis significance test. However, evaluation of eight odds
ratio’s restricted to be larger than one constitutes a multivariate one-sided
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hypothesis. Multivariate one sided hypotheses can be evaluated using the
methods described in Silvapulle and Sen (2005) or the approach proposed in
this paper. An advantage of the approach proposed in this paper is that it
can be used to directly compare two or more hypotheses that are not nested
within each other.

Further study is needed to explore the advantages and disadvantages of
inequality constrained hypotheses and hypotheses formulated using ordinal
or linear restrictions in different situations. Further study is also required
to compare the performance of model selection (either Bayesian or based
on information criteria) and null hypothesis significance testing. However,
both are beyond the scope of this paper. The interested reader is referred
to Dayton (2003) who compares hypotheses testing and model selection in
the context of comparisons of means, and Wagenmakers (2007) who gives
an evaluation of hypothesis testing and Bayesian model selection.
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Appendix A: Derivation of the Bayes Factor for
Constrained Hypotheses

The Bayes factor for a constrained hypothesis Ht with respect to the uncon-
strained hypothesis Hu is the ratio of two predictive densities or marginal
likelihoods:

BFtu =

∫
π L(π | f)Pr(π | α,Ht)dπ∫
π L(π | f)Pr(π | α,Hu)dπ

. (10)

Computation of the Bayes factor can be burdensome (Chib, 1995; Gelfand
and Smith, 1990; Verdinelli and Wasserman, 1995), because the integrals
involved may not be easy to compute. However, for the purposes of this
paper it is convenient to choose the representation used by Chib (1995):

BFtu =
L(π | f)Pr(π | α,Ht)

P (π | f ,α,Ht)
/
L(π | f)Pr(π | α,Hu)

P (π | f ,α,Hu)
, (11)

for any value of π in agreement with the constraints of Ht. The prior
distribution for a constrained hypothesis can be derived from the prior dis-
tribution of the unconstrained hypothesis:

Pr(π | α,Ht) =
Pr(π | α,Hu)IHt∫

π Pr(π | α,Hu)IHtdπ
, (12)

where IHt equals 1 if π is in agreement with the constraints in Ht and zero
otherwise. In the same manner the posterior distribution of a constrained
hypothesis is obtained:

P (π | f ,α,Ht) =
P (π | f ,α,Hu)IHt∫

π P (π | f ,α,Hu)IHtdπ
. (13)

It follows that for π∗ ∈ Ht

Pr(π∗ | α,Ht) = c−1
t Pr(π∗ | α,Hu), (14)

where c−1
t denotes the proportion of Pr(π | α,Hu) in agreement with Ht,

and
P (π∗ | f ,α,Ht) = d−1

t P (π∗ | f ,α,Hu), (15)

where d−1
t denotes the proportion of P (π | f ,Hu) in agreement with Ht.

Since the likelihoods in (11) cancel against each other, insertion of (14) and
(15) renders:

BFtu =
ct

dt
. (16)

The interested reader is referred to Klugkist, Laudy and Hoijtink (2005) for
a similar derivation.

For hypotheses specified using only inequality constraints an estimate
of ct can be obtained using a sample from Pr(π | α,Hu). Since the prior
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is a Dirichlet distribution with parameters α, this sample can be obtained
using procedure DIR-2 described in Narayanan (1990). This procedure will
be elaborated in Appendix B. The proportion of sampled parameter vectors
π in agreement with Ht is an estimate of c−1

t . The posterior is a Dirichlet
distribution with parameters f + α. The proportion of sampled parameter
vectors from P (π | f ,α,Hu) in agreement with Ht is an estimate of d−1

t . If
hypotheses are specified using equality constraints in addition to inequality
constraints, these estimators can not be used because ct and dt are not
defined for constraints like π11 = π21. The algorithm for estimation of BFtu

presented below can handle both equality and inequality constraints.
Let the inequality constraints in hypothesis t be denoted by t∗. The

Bayes factor of a hypothesis containing both equality and inequality con-
straints versus the unconstrained hypothesis can then be written as:

BFtu = BFt∗,u ×BFt,t∗. (17)

Note that BFt∗,u can be computed using the estimates of ct and dt presented
above. The computation of BFt,t∗ will be discussed below and in Appendix
B.

To deal with equality constraints like π11 = π21 these will be replaced
with about equality constraints like |π11 − π21| < δ0. According to Berger
and Delampady (1987) a Bayes factor based on π11 = π21 is indistinguish-
able from the Bayes factor based on |π11 − π21| < δ0 if δ0 is small enough.
Along the same lines as the derivation in the beginning of this section it
can be shown that BFt,t∗ = ct,t∗/dt,t∗, where c−1

t,t∗ is the proportion of the
constrained (by the inequality constraints of hypothesis t) prior distribution
in agreement with all the constraints of hypothesis t, and d−1

t,t∗ the corre-
sponding proportion from the constrained posterior distribution. If δ0 is
very small straightforward estimates of ct,t∗ and dt,t∗ will be very inefficient.
However, the following approach solves this problem. Define BFtu as

BFtu = BFt∗,u ×BFtδR
,t∗ ×BFtδR−1

tδR
× . . .×BFtδ0 tδ1

=

ct∗
dt∗

×
ctδR

,t∗

dtδR
,t∗
×

ctδR−1
,tδR

dtδR−1
,tδR

× . . .×
cδ0,δ1

dδ0,δ1

, (18)

where δr−1 = δr/2 for r = 1, ..., R, and δR = .2. Note that c−1
tδR−1

,tδR
de-

notes the proportion of the constrained (by the inequality constraints of
hypothesis t and about equality constraints with bound δR) prior distribu-
tion in agreement with a hypothesis with the same inequality constraints,
but equality constraints with bound δR−1, and d−1

tδR−1
,tδR

the corresponding
proportion for the posterior distribution. If R is large enough, BFtδ0 tδ1

→ 1
which can easily be checked during the computation of (18). The ctδR−1

,tδR
’s

and dtδR−1
,tδR

’s needed for the computation of (18) can be obtained using
the constrained Gibbs sampler presented in Appendix B.
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There is an interesting link between (16) and an estimator of the Bayes
factor discussed by Dickey (1971), Gunel and Dickey (1974) and Verdinelli
and Wasserman (1995). Their estimator can be used, for example, to com-
pare H0 : θ = 1 with Hu : not H0. Like for (16) the derivation of their
estimator starts with (11) which after cancelation of the likelihood renders:

BF1u =
Pr(θ | α,H0)
P (θ | f ,α,H0)

/
Pr(θ | α,Hu)
P (θ | f ,α,Hu)

, (19)

where
Pr(θ | α,Hu) =

∫
{π:

π11π22
π12π21

=θ}
Pr(π | α,Hu)dπ, (20)

and
P (θ | f ,α,Hu) =

∫
{π:

π11π22
π12π21

=θ}
P (π | f ,α,Hu)dπ. (21)

Note that Pr(θ | H0) equals 1 if θ = 1 and 0 otherwise. The same holds for
P (θ | f ,H0). The implication is that for θ = 1, that is, θ ∈ H0 (19) reduces
to:

BF1u =
P (θ = 1 | f ,α,Hu)
Pr(θ = 1 | α,Hu)

. (22)

Comparing (16) - the ratio of a posterior and prior proportion with respect
to an unconstrained hypothesis - with (22) - the ratio of a posterior and
prior density with respect to an unconstrained hypothesis - it can be seen
that (16) is an extension of (22) that can handle inequality constraints in
addition to equality constraints.

Appendix B: Estimation of the c’s and d’s

The prior distribution (2) is a Dirichlet distribution:

Pr(π | α,Hu) ∼ Dir(π | α). (23)

The posterior distribution (3) is also a Dirichlet distribution:

P (π | f ,α,Hu) ∼ Dir(π | f + α). (24)

Due to the similarity of prior and posterior distribution, we will only explain
how to obtain a sample from the prior distribution. Let the elements of π be
denoted by πa for a = 1, . . . , A and the corresponding elements of α by αa

for a = 1, . . . , A. We will subsequently explain how to estimate ct∗, cδtR
,t∗,

and ctδr−1
,tδr

for r = R, . . . , 1.
We will use procedure DIR-2 from Narayanan (1990) to obtain a sample

from the prior distribution:

• Initialize za = 1 for a = 1, . . . , A.
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• Step 1. For a = 1, . . . , A sample za from

Pr(za | αa) ∼ Gamma(za | αa, 1). (25)

• Step 2. For a = 1, . . . , A compute

πa =
za∑A

a−1 za

(26)

• Iterate Steps 1 and 2, delete a burn-in phase of 10,000 iterations, and
use the remaining 100,000 iterations to estimate the d’s of interest.

Using the resulting sample of π’s it is easy to estimate c−1
t∗ from (18) by

means of the proportion of the sampled π’s in agreement with the inequality
constraints of hypothesis t. Note that for the estimation of c−1

t∗ a burn-in
is not necessary because the algorithm renders independent samples of π.
Note also that this is not the case in the next steps in which the algorithm
will be transformed to a Gibbs sampler (Gelman, Carlin, Stern and Rubin,
2004, pp. 287-289; Lee, 2001, pp. 259-268).

The proportion of the prior distribution of Ht∗ in agreement with HtδR

is represented by c−1
δtR

,t∗. To estimate c−1
δtR

,t∗ a sample has to be obtained
from

Pr(π | α,Ht∗) ∝ Dir(π | α)IHt∗ , (27)

where IHt∗ = 1 if π is in agreement with the constraints of Ht∗ and zero
otherwise. The proportion of the sampled π’s in agreement with HtδR

is the
required estimate.

The proportion of the prior distribution of Htδr
in agreement with Htδr−1

is represented by c−1
tδr−1

,tδr
. To estimate c−1

tδr−1
,tδr

a sample has to be obtained
from

Pr(π | α,Htδr
) ∝ Dir(π | α)IHtδr

, (28)

where IHtδr
= 1 if π is in agreement with the constraints of Htδr

and zero
otherwise. The proportion of the sampled π’s in agreement with Htδr−1

is
the required estimate.

A sample from (27) and (28) can be obtained using the sampling algo-
rithm described above if Step 1 is modified: For a = 1, . . . , A sample za

from
Pr(za | αa, La, Ua) ∝ Gamma(za | αa, 1)ILa,Ua , (29)

where ILa,Ua = 1 if za is a value within the interval with lower bound La

and upper bound Ua, and zero otherwise. Sampling within bounds can be
achieved using inverse probability sampling. The interested reader is referred
to Gelfand, Smith and Lee (1992). The bounds La and Ua are determined
from the restrictions on the π’s. We will illustrate this by means of five
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examples.

Example 1: If Ht∗ : π1 < π2 < π3 then z1∑
a za

< z2∑
a za

< z3∑
a za

, that is,
z1 < z2 < z3. The implication is that the lower and upper bound when
sampling z1 are −∞ and the current value of z2, respectively. The lower
and upper bound when sampling z2 are z1 and z3, respectively. The lower
and upper bound when sampling z3 are z2 and ∞, respectively.

Example 2: If
Ht∗ :

π1π2

π3π4
> 1, (30)

then
z1∑
a za

z2∑
a za

z3∑
a za

z4∑
a za

> 1, (31)

that is, z1z2
z3z4

> 1. The implication is that the lower bound when sampling
z1 is z3z4

z2
and the upper bound is ∞. When sampling z3 the lower bound

is −∞ and the upper bound is z1z2
z4

. For z2 and z4 bounds can be derived
analogously.

Example 3: As discussed in Appendix A, the restriction π1 − π2 = 0 can
be handled using a sequence of restrictions |π1 − π2| < δr for r = R, . . . , 1.
Each element of this sequence can be rewritten as∣∣ z1

z1 + z2
− z2

z1 + z2

∣∣ < δr (32)

which leads to
|z1 − z2| < δr(z1 + z2). (33)

This equation has two implications:

z1 − z2 < δr(z1 + z2), (34)

and
z1 − z2 > −δr(z1 + z2). (35)

Both equations can be rewritten with the focus on z1 (similar equations can
be obtained for z2):

z1 < z2
1 + δr

1− δr
, (36)

and
z1 > z2

1− δr

1 + δr
, (37)

that is, z1 should be sampled with upper bound (36) and lower bound (37).
Note that z1 and z2 are gamma deviates and thus positive numbers. Sam-
pling with these bounds renders a sample from the prior distribution of
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Htδr
: |π1 − π2| < δr. The proportion of this sample in agreement with

Htδr−1
: |π1 − π2| < δr−1 is an estimate of c−1

tδr−1
,tδr

.

Example 4: The hypothesis Ht : π1
π2

= π3
π4

= π5
π6

can be handled using the
sequence of hypotheses

Htδr
:
∣∣π1

π2
− π3

π4

∣∣ < δr,
∣∣π1

π2
− π5

π6

∣∣ < δr,
∣∣π3

π4
− π5

π6

∣∣ < δr (38)

for r = R, . . . , 1. In terms of z’s (38) can be written as∣∣z1

z2
− z3

z4

∣∣ < δr,
∣∣z1

z2
− z5

z6

∣∣ < δr,
∣∣z3

z4
− z5

z6

∣∣ < δr, (39)

from which lower and upper bounds for the z’s can easily be determined.

Example 5: The hypothesis Ht : π1 < π2 = π3 can be replaced by a sequence
of hypotheses of the form

Htδr
: π1 < {π2, π3}, |π2 − π3| < δr (40)

for r = R, . . . , r. Written in terms of z’s this changes to:

z1 < {z2, z3},
∣∣ z2∑3

a=1 za

− z3∑3
a=1 za

∣∣ < δr. (41)

Using results from Examples 1 and 3, it can be seen that a sample from the
prior distribution of Htδr

: π1 < {π2, π3}, |π2−π3| < δr can be obtained using
the bound L1 = −∞ and U1 = min(z2, z3), L2 = max(z1,

−δ3z1+(1−δr)z3

1+δr
)

and U2 = δrz1+(1+δr)z3

1−δr
, and L3 and U3 analogous to L2 and U2.

The following constrained hypotheses can be handled using the proce-
dure described in Appendix A and B:

• Hypotheses that are specified using one or more equality constraints
as illustrated in Examples 3 and 4 as long as each constraint is of the
form: ∣∣∏A

a=1 πa∏B
b=1 πb

−
∏C

c=1 πc∏D
d=1 πd

∣∣ < δr, (42)

with A = B and C = D. For restrictions of this type the term
∑

a za

- in Example 3 z1 + z2, in Example 4 the term has already cancelled
in (39) - can easily be handled, which enables sampling of π under
restrictions by means of the z’s.

• Hypotheses with one or more arbitrary constraints on π as long as
equality constraints are not used to specify these hypotheses. For
hypotheses without equality constraints only dt and ct have to be es-
timated.
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• Hypotheses in which equality constraints (as specified under the first
bullet) are combined with inequality constraints can be handled as
long as each inequality constraint is of the form:

A∏
a=1

πa >
B∏

b=1

πb, (43)

with A = B. For restrictions of this type the
∑

a za as appears in the
examples cancels, and consequently the za based sampling algorithm
can easily be used to obtain a sample of π in accordance with the
constraints of the hypothesis at hand.
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Figure 1: Posterior model probabilities for H1 : θ1 = θ2 if it is compared
with Hu : θ1, θ2 (top) and for H3 : θ1 > θ2 if it is compared with Hu : θ1, θ2

(bottom). The value of θ1 = 1 and the values of θ2 are given along the
x-axis.
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Figure 2: Sensitivity of posterior model probabilities for H1 : θ1 = θ2 if it
is compared with Hu : θ1, θ2 for N = 40 (top) and N = 800 (bottom). The
value of θ1 = 1 and the values of θ2 are given along the x-axis. For various
choices of α the posterior model probability of H1 is displayed on the y-axis.
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Figure 3: Sensitivity of posterior model probabilities for H3 : θ1 > θ2 if it
is compared with Hu : θ1, θ2 for N = 40 and N = 800. The value of θ1 = 1
and the values of θ2 are given along the x-axis. For various choices of α
(0.5, 0.8, 1.0, 1.5, 2.0) the posterior model probability of H3 is displayed on
the y-axis.
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